Correctly rounded multiplication by arbitrary precision constants - Archive ouverte HAL Access content directly
Conference Papers Year : 2005

Correctly rounded multiplication by arbitrary precision constants

(1, 2) , (2, 3)
1
2
3

Abstract

We introduce an algorithm for multiplying a floating-point number $x$ by a constant $C$ that is not exactly representable in floating-point arithmetic. Our algorithm uses a multiplication and a fused multiply and add instruction. We give methods for checking whether, for a given value of $C$ and a given floating-point format, our algorithm returns a correctly rounded result for any $x$. When it does not, our methods give the values $x$ for which it does not.
Fichier principal
Vignette du fichier
BMArith.pdf (179.25 Ko) Télécharger le fichier
Loading...

Dates and versions

ensl-00000010 , version 1 (13-04-2006)

Identifiers

Cite

Jean-Michel Muller, Nicolas Brisebarre. Correctly rounded multiplication by arbitrary precision constants. ARITH'17, 17th IEEE Symposium on Computer Arithmetic, EEE Computer Society Technical Committee on VLSI, Jun 2005, Cape Cod, United States. ⟨10.1109/ARITH.2005.13⟩. ⟨ensl-00000010⟩
85 View
191 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More