N

N

Responsive Algorithms for Handling Load Surges and
Switching Links On in Green Networks
Radu Carpa, Marcos Dias de Assuncao, Olivier Gliick, Laurent Lefevre,

Jean-Christophe Mignot

» To cite this version:

Radu Carpa, Marcos Dias de Assuncao, Olivier Gliick, Laurent Lefévre, Jean-Christophe Mignot.
Responsive Algorithms for Handling Load Surges and Switching Links On in Green Networks. IEEE
International Conference on Communications - IEEE ICC’16 - Green Communications Systems and
Networks Symposium, May 2016, Kuala Lumpur, Malaysia. hal-01266279

HAL Id: hal-01266279
https://inria.hal.science/hal-01266279
Submitted on 10 Nov 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01266279
https://hal.archives-ouvertes.fr

Responsive Algorithms for Handling Load Surges
and Switching Links On in Green Networks

Radu CARPA, Marcos Dias de ASSUNCAO, Olivier GLUCK, Laurent LEFEVRE , Jean-Christophe MIGNOT
Inria Avalon - LIP Laboratory - Ecole normale supérieure of Lyon, University of Lyon, France
Email: radu.carpa@ens-lyon.fr, marcos.dias.de.assuncao @ens-lyon.fr, olivier.gluck @ens-lyon.fr,

laurent.lefevre @inria.fr, jean-christophe.mignot@ens-lyon.fr

Abstract—Reducing the energy consumed by wired computer
networks is a challenge that has been actively investigated over
the past few years. A popular mechanism proposed to reduce
the consumption aims to put links and line cards to sleep mode
during off-peak hours. Such a mechanism, however, decreases the
available network capacity and increases the risk of congestion
if traffic rises unexpectedly. This paper proposes a solution
to rapidly react to network bursts and turn-on sleeping links,
which we term as SegmenT Routing based Energy Efficient
Traffic Engineering for switching ON (STREETE-ON). The
proposed algorithm was implemented in the OMNeT++ network
simulator using state-of-art dynamic graph algorithms. In such
a way, we achieved execution times of tens of milliseconds for
a 50-node network. Experimental results show that STREETE-
ON can effectively prevent network congestion, avoid turning-
on unneeded links, and preserve good energy-efficiency of the
network.

I. INTRODUCTION

The rising traffic demands of today’s services — e.g. those
relying on cloud computing, video-on-demand, and big-data
processing — continue to demand increasing data transfer
rates from underlying networks. Network operators, who feel
continuous pressure to differentiate and deliver quality of
service, often tackle this challenge by expanding network
capacity, hence constantly adding new equipments and links,
or increasing the rates of existing links. Certain studies,
however, argue that if traffic continues to grow at the current
rate, in less than 20 years network operators may reach an
energy capacity crunch where the power grid may be unable
to provide the energy the overall network requires [1].

Major organisations have been trying to minimise the energy
consumption of their infrastructure by reducing the number of
required equipments and maximising utilisation. Google, for
instance, created custom Software Defined Network (SDN)
devices and prioritised traffic in order to achieve near-100%
utilisation of intra-domain links [2]. With an intelligent traffic
orchestration, Google is able to reduce the energy consumption
while providing high quality of service. However, such a
traffic regulation requires full knowledge of communicating
applications and their demands; factors over which ordinary
network operators usually do not have control. As a result,
they provision network capacity to handle peak load, while
devices consume energy even under low utilisation. Evidence
shows that the utilisation of production 100Gbps links can be
as low as 10% during normal operation [3].

As network equipments usually draw the same amount of
power regardless of their utilisation [4], a commonly exploited
means to reduce the energy consumed by a network consists
in setting its equipments to low power modes when partially
used, or switching them off completely. While turning links
off is a widely exploited technique at a conceptual level,
most previous work does not consider dynamic networks.
The literature describes several techniques, including Mixed
Integer Linear Programming (MILP) formulations that are
solved offline and rely on estimated traffic matrices [5]. Com-
plex linear programming formulations, heuristics and meta-
heuristics have shown that substantial energy savings can be
achieved. However, these approaches are often slow, taking
tens of minutes to compute a solution. Arguably, their viability
is justified by assuming that network traffic varies slowly and
presents diurnal patterns; periods of low traffic at night and
peak demand during the day.

This assumption, however, does not hold true at short time
scales [6]. The shorter the interval over which the average
traffic 1S measured, the more variations become noticeable.
A slow variation when measuring traffic per day may contain
multiple bursts when zoomed in and analysed at smaller scales.
Moreover, previous work highlights that traffic bursts are more
visible when flow aggregation is low, which usually corre-
sponds to a moment of low network utilisation. Considering
traffic bursts at small scales is important in order to determine
when network equipments should be brought back to fully
operational state after being shut down to save energy. It is
important under such scenarios to react quickly to bursts when
links that have been previously turned off become necessary.

The literature has thus far mostly overlooked the problem
of turning links on. One of the exceptions [7] aims to partition
the network over cycles. At each cycle, a single link can be
turned off and the traffic is rerouted over the remaining links.
Reacting to congestion is achieved by turning on the respective
link. A distributed approach is also proposed [8] where a node
evaluates at a random time interval whether its adjacent links
should be turned on; a solution that reacts slowly to network
changes. Another approach consists in turning-on all links at a
pre-defined time in the morning, when traffic increases [9]. If
an unexpected burst happens during the night, however, certain
network links will remain in low power consumption mode. A
previous work uses traffic matrices to estimate the best links
to be turned on [10], considering only the actual network state.

o

o
—|w|o|e
oo
ol e

f) Link turned on

e) (Ordered) candidate links

Figure 1: STREETE-ON: simulating the all-on network view to select the best link(s) to turn on

In this work, we propose schemes to react fast to traffic
bursts in operators’ core networks and to switch on pre-
viously turned-off links as quick as possible. Our solution
aims to complement previous work by enabling fast reaction
to unexpected network events while further optimisation can
be performed in background using the previously proposed
solutions. We analyse the impact of traffic variations in an
energy-optimised topology and evaluate the trade-offs between
energy savings and packet loss while attempting to minimise
the number of times links are turned-off/on. In particular, we
evaluate the impact of the time needed for the solution to react
to network changes.

The rest of this paper is structured as follows. Section
II introduces the notations and formalises the problem. Our
solution is presented in Section III and the results are presented
and discussed in Section IV. Section V describes ongoing
work, and Section VI concludes the paper.

II. FORMAL DESCRIPTION OF THE LINKS-ON PROCESS

The challenge of turning links off for reducing the energy
consumption of networks was frequently considered by the
research community. In this work, we consider unexpected
traffic bursts in a network with links that have been turned
off. Our goal is to react as fast as possible by turning links
back on to avoid congestion.

This section presents our assumptions, introduces the no-
tations used in the paper, and provides an abstract graph
formulation of the problem.

A. Network Context

The work takes into account an operator network with the
following characteristics:

a) Virtual Tunnels: We assume that a full mesh of virtual
tunnels among the nodes of the network allows to change the
path of the data passing through the network dynamically. All
the data entering the network domain at a source node s and
travelling towards the destination node d will be transmitted
through the tunnel s — d. The paths of tunnels are modified to
route the traffic through the links kept on and avoid switched
off links.

A classical way to create virtual tunnels consists in using
the MPLS protocol as forwarding dataplane and the RSVP-TE
protocol to signal the tunnels and change their paths.

b) Monitoring the Bandwidth: Network nodes are ca-
pable to monitor the bandwidth used by each of the virtual
tunnels starting at a given node.

¢) Centralised Management: A centralised path compu-
tation engine is available on the network and has the ability
to collect statistics from nodes and change the paths of data
flows in the network.

d) Unidirectional Links: We assume that links can be
turned on and off independently in each direction without
affecting the opposite direction. For example, in long-distance
optical links, the transponders may be unidirectional. Turning
a link off will correspond to turning off the transponder and
part of the line card.

e) Homogeneous Links: We assume that the network link
speeds and their energy consumption are homogeneous.

B. Graph Modelling

Consider a representation of the network by a connected
directed graph G(V, E). Each network device corresponds to
a vertex v € V and each link to an edge e € E. A function
c: E — RT represents the capacities of the edges, i.e. the link
speed. A function [: E — R* represents the length (cost) of
the edge.

The traffic entering the network at the source node s € V'
and flowing towards the egress destination node d € V is
defined as the flow f; 4 > 0. In this work we assume that
there is no traffic from a node to itself, i.e. Vs € V, f; s = 0.
Intuitively, Vd € V, the value of fs 4 will be computed by
the node s by monitoring the bandwidth passing through the
virtual tunnel s — d.

A network-wide traffic matrix 7M = [f; ;] is a square
matrix where each case %, j corresponds to the value of the
flow f; ; (Figure 1c). We consider that this traffic matrix is
assembled on the network controller by collecting the data
from all the nodes.

A path P = (ey,eq,...) is a sequence of edges such that
((e; = (a,b) and e;41 = (¢,d)) = b = ¢). The length of a

path P = (e, ea,...) is the sum of the lengths of the edges in
the path: [(P) = > I(e). A shortest path from the node s to d

is a path such that %Dere is no other path P’ with I(P’) < I(P).

For each (s,d) € V2 s # d, there exists at least one path
from s to d and the tunnel s — d transporting the flow f; 4
always traverses the network via the shortest path from s to
d in G. The selection among multiple shortest paths of the
same length is randomly-deterministic, i.e. the first path found
during the computations is chosen. It depends on the initial
construction of the in-memory data structure, but it is always
the same for a given in-memory structure.

The utilisation of an edge in the graph G with a certain
traffic matrix 7 M is represented by the function ug a1 :
E — [0,1] defined as the sum of the flows passing through
the edge divided by the capacity of the edge.

For a given network G and a traffic matrix T M, we
define the set of links at critical load CLg7Mm = {e €
G | ug 7m(€e) > a}. It contains the links with an utilisation
higher than « in G. For example, if o = 0.8, CL;+ will contain
the links with an utilisation higher then 80%. Throughout this
paper we’ll refer to links in CL as "links close to congestion".

III. STREETE-ON
A. Problem Statement

Figure 1 illustrates our algorithm. Let G be the initial
network topology, we introduce G such that V' = V and
E C E, i.e. a subset of links is switched off. An example of
G and G can be seen in Figure la and 1b.

A novelty is that the algorithm uses both the energy-efficient
network topology G’ and the initial full network G in order to
take a decision. We consider that the best quality of service
that a network can provide is achieved by keeping all the links
on. Hence, we leverage knowledge about the all-on network
to decide which links are the best candidates to be turned on
and avoid congestion.

Starting from the energy efficient network topology G, it
uses the traffic matrix to find the links at critical load CLg .
The full network topology G is then used to select good
candidate links. The algorithm finishes by doing a rapid in-
memory simulation of turning those links on and estimating
the impact of a decision without actually turning links on in the
physical network. Whenever the computation decides that it is
worth turning links on to reduce the utilisation of links from
CL, the decision is sent to network nodes and the physical
links are turned on.

The controller hence aims to solve the following problem:
if CLg: 7p1 # 0. find a subset of edges 2 (E\ E), such that,
by inserting them into G , CLy 7, would become an empty
set.

B. Algorithm

Algorithm 1 details our solution. Our greedy heuristic
consists in first trying to turn-on the links which are off
in the energy-optimised network G', but would have a high
utilisation in G (lines 3 and 8). By using this heuristic we

Algorithm 1 STREETE-ON

1: procedure STREETE-ON(G, G , T M)

2: result < () ,

3 candidateLinks < E\ E

4: congested <= CL g TM

5: changed < true

6: while congested # () and changed = true do

7 changed < false

8 for all e € sorted(candidateLinks, ug 7r) do

9: D> sorted in descending order of utilisation in G
10: if congested # () then
11: E <+ F U{e} > Turn on the link e
12: congestedq prer <— C[,g, TM
13: if congestion decreased then
14: changed < true
15: candidateLinks < candidateLinks \ {e}
16: congested < congested, fier
17: result < result U {e}
18: else ,
19: E «+ FE \6 > Do not keep e on
20: end if
21: end if
22: end for
23: end while
24: if congested # 0 and CLg 711 # (0 then
25: result <— result U (E \ E')
26: E «E > Turn all the links on
27: end if
28: return result

29: end procedure

prioritise turning on the links which would create shortcuts for
large flows. For example, in Figure 1 the link ab is selected
as a candidate by analysing the traffic matrix and the two
topologies. It is a link which is off in G, but would transfer
much data in G (the flows f,; and fq).

At lines 11-12 the algorithm simulates turning the link on
and estimates the congestion after this operation. At lines 13-
20 it tests if congestion decreased. If yes, the link will be
scheduled to be turned on in the physical network, else the
link is not scheduled for ignition.

"congestion decreased" at line 13 is defined as:

« solving all the congestion: congestedg fier = 0

« or not creating new congested links, while decongesting
at least one of them:
(Be s.t. e ¢ congested and e € congested, fier) and
3f s.t. f € congested and f ¢ congested, fier)

 or not creating new congested links, while decreasing the
utilisation of at least one of congested:
Fe st. e ¢ congested and e € congestedy fier) and
(3f € congested s.t. ug: 7 ,(f) decreased)

Sometimes a combination of links must be turned on to be
able to avoid congestion. The while loop at line 6 ensures the
repetition of the algorithm until the congestion is solved.

The presented algorithm hides a complex operation in
accesses to CL at lines 4, 12 and 24: recomputing the shortest
paths to estimate the load of links and find the congested ones.

A naive approach for recomputing the shortest paths uses

o e b /20

(a) Initial load in G with a 7 M from SNDLib

o0 o 05130

(b) Initial load in G with a generated 7. M

0.9

0.8

L
0.6
0.5
0.4

0.3

g
o, e
287% " ot
e
0.2
0.1

100092530 10.0.0:109/30

(c) Example of initial Q'/ in Germany 50

Figure 2: Examples of G and G in the Germany 50 network

n static Dijkstra computations. In this work we seek to react
fast to a network congestion, so we used a optimised dynamic
All Pairs Shortest Path algorithm from the literature [11]. It is
designed to execute only partial re-computation of the shortest
paths in case of edge insertion/deletion. Among the algorithms
analysed by the authors, we decided to use D-RRL: a slightly
modified version of the algorithm initially proposed in [12].
The maximum theoretical complexity of this algorithm is the
same as static Dijkstra computations. However, in practice it
proves itself much faster.

C. Implementation

As stated beforehand, we use network tunnels to transpar-
ently reroute traffic. However, the protocol usually used to
signal virtual tunnels, RSVP-TE, scales badly with network
size. The worst case number of states that a network device
must keep active for a full mesh of virtual tunnels is O(|V|?)
and in industry it is considered a best practice to not use
RSVP-TE to signal a full mesh of tunnels.

To reduce the complexity, we use the SPRING protocol,
which is a mix of source routing and shortest path routing
protocols. Due to its source routing nature, changes in the
paths of a tunnel must be applied only on the node situated
at the inbound end of the tunnel. No time and signalling
are lost re-configuring the midpoint devices. This enables
fast flow setup and easy reconfiguration of virtual circuits
with minimum overhead. Moreover, for a full mesh of virtual
tunnels, each node must keep exactly |V| — 1 states: one
per each tunnel which starts at the concerned node. An
interested reader can relate to our previous work [13] or to
the draft IETF RFC [14] for a more detailed overview of the
SPRING protocol, which is a very efficient way to simplify
the implementation compared to MPLS + RSVP-TE.

IV. PERFORMANCE ANALYSIS

The proposed STREETE-ON algorithm was implemented in
the OMNeT++ discrete event simulator [15]. The STREETE-
ON algorithm is executed by a centralised controller when a

link at critical load is detected. Figure 2c shows the load dis-
tribution in a network before executing any turn-on algorithm.
The small black lines represent the links in a sleep state, while
the dotted ones are active only in one direction. The colour
illustrates the utilisation of the links.

A. Analysed Algorithms

We evaluate the performance of our solution against the
following intuitive algorithms which allow to take fast turn-
on decisions:

e Turn on the links in the inverse order that they were
switched off. Hereafter we refer to this algorithm as
lastoff.

e Turn on all the links, referred to as allon.

e Turn on the links concentrically around the most con-
gested one; hereafter referred to as locality.

Similarly to STREETE-ON, the examined algorithms sim-
ulate the turn-on process in memory. Only after choosing all
the links that must be turned-on, the decision is applied to the
physical network.

a) lastoff: the algorithm 2 consists in turning-on one by
one the links in the inverse order they were switched off until
congestion is avoided. At line 3, the last turned-off link is
selected among those being off, after that the link is scheduled
to be turned-on at lines 4-5. The operation is repeated until
the congestion is solved or all the links are turned-on.

Algorithm 2 lastoff

1: result + 0 ,
2: while CLy/ -\ #0and E\E #0 do
3 e < lastTurnedOf f(E \ E/)

4 E +E U{e}

5 result < result U {e}

6: end while

b) allon: the algorithm 3 turns-on all the links (lines 2-
3) as soon as a link at critical load is detected in the network
(line 1).

Algorithm 3 allon

CL; 7 p#0 theln
result < E\ E
E «E

else

result + 0
end if

AN T e

c) locality: at line 3, the algorithm 4 searches for the
link with the highest utilisation in Ql. After that, at line 5 it
executes an Breadth-first search algorithm to traverse the graph
up to a maximum depth given in parameter and to extract all
the sleeping links. All the found links are turned on. If the
congestion is not avoided, the algorithm is repeated with larger
depth until turning on all the links or avoiding the congestion.

The algorithm corresponds hence to turning-on links in
cycles around the one with the highest utilisation.

Algorithm 4 locality

result < ()
depth + 1
maze = mazUtilizationLink(CLg 7,)
while £\ E' # 0 and CL,s ;. # 0 do
toTurnOff < (E\ El) NlinksInBFS(G, maze, depth)
E <+ E UtoTurnOff
result < result U toTurnO f
depth < depth + 1
end while

R O T

B. Experimental Setup

% 50
s y=0.08 - - - - v=0.03 o
2 40 Y=0.07 oo y=0.02 ---:= i
8] y=0.06 y=0.01 ==
£ y=0.05 congestion
g 30 v=0.04 .
kel
[9]
9]
)
£
e
o] 0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time (s)

Figure 3: Influence of ~ on total injected traffic.

Each link in OMNeT++ was simulated with a speed of
3Gbps. The propagation delay was given as the bird-fly
distance by Google Maps APL

To validate our solution on a realistic use case, we used
the Germany 50 (Figure 2) topology and associated traffic
matrices from SNDLIib [16]. The network has 50 routers and
176(88-2) links . However, using the real traffic matrices from
SNDLib also has its shortcomings, since the distribution of the
loads throughout the network is stable. For example, in Figure
2a we observe that the most loaded links are concentrated
around the node situated in Frankfurt, which corresponds

to reality as Frankfurt is a major international interconnect
node. Unfortunately, most traffic matrices from SNDLib have
a similar distribution of the load.

To be able to analyse the efficiency of the algorithms, we
would like to test them with different load distributions. When
comparing two algorithms on the same network topology, one
may behave better when the network load is concentrated in
the centre, while another when the load is at the extremities
or is uniformly distributed.

We generated multiple traffic matrices based on those from
SNDLib. Each generated traffic matrix corresponds to a ran-
dom permutation of the values of the 2450 flows. As a result,
sometimes the most intensive flows have to traverse the entire
network, other times are isolated at an extremity. Figure 2b
shows different distributions of the initial network load.

To test the turn-on algorithms, we start by executing a
turn-off algorithm which puts the least utilised links to sleep
until no more links can be turned-off without provoking a
congestion. After that, we increase the initial network load by
an additive factor y every second. The value of a flow at the
time ¢ of a simulation is equal to f, 5(t) = fa,5(0) % (14y*t).
To easily visualise the influence of this parameter, Figure 3
shows the variation of the total network load with different
values of v for a fixed traffic matrix. Hence, v defines the
speed of the increase of the traffic flows and allows to test the
reactivity of the algorithm. In the most aggressive case, with
v = 0.08, the network load almost doubles in 5 seconds.

A total of 640 simulation runs were executed. Correspond-
ing to 80 runs per y with 20 different random load distribution
per ~v. Each simulation correspond to 50 seconds of network
lifetime, as shown in Figure 3.

C. Avoiding Congestion

Intuitively, one can think that algorithms which turn-on
multiple links at a time will result in a faster avoidance of the
congestion, meaning that the network will not reach a state
when packets will start being dropped in router queues.

Simulation results summarised in Figure 4 partially confirm
that statement. Allon has the lowest number of lost packets,
while STREETE-ON tends to have slightly worse results
compared to other algorithms. However, it must be noted that
the difference in number of lost packets is counted in tens
of packets. With the simulated link speeds of 3Gbps (250k
1500byte packets per second) it corresponds to less than 0.05%
packet lost on the link.

The results in terms of lost packets are difficult to evaluate,
because they depend on many parameters. We can however
affirm that under the tested network conditions with a = 0.8,
with the propagation delay of Germany 50, with the tested
traffic and selected ~y values, all solutions are good in avoiding
the congestion and only few packets are lost.

The results from Figure 4 include only the lost packets until
the all-on network G become congested (part under the black
‘congestion’ line in Figure 3).

As the values do not differ much for different ~-values, we
describe results for every second value of v in Figure 4.

120
100¢ T T 1 .
8 eof 1+ — - 1 rod 1
X I I
[] I | |
8 60r T ! T T 1
par I T | I
S 40r +ot ! DT + T 1
1 | 1 b | —_—
20} . | 1 - 1 | 1 T 1 J
N — |] e | . I
0)) I 1 1 1 1 I) 1 1 1 — 1
streete lastoff allon locality streete lastoff allon locality streete lastoff allon locality streete lastoff allon locality
y =002 y=004 y =006 y=008
Figure 4: Number of lost packets with different values of ~.
7 =0.01 5 =0.02 5 =0.03 5 =0.04
S 1ol - - —T - - T - - T -]
[2] —_—
'-E 160 T T - + —— E
% 150 | T 1 + | + — T
= 1 -1 - — T | o
£ | 1 ! 1 . ! — -]
> —_— | 1 I
2 120} 1 [1 | :
= —_— T | —_—]
g 110 | + I ot I + 1 ! R
= 100 == == = === /= L R S L . M S . . L
streete lastoff allon locality streete lastoff allon locality streete lastoff allon locality streete lastoff allon locality
Sanof ' ' R ' 1 —] — R
£ 160} == T 4 — = Tt | 4 = - []
= | e |] —
S 1s0f : + ! + : — + — X
g 140 | : T | T 7 1 + T L 1
€ B0 — I — +— 1+ :
20— L + L= + — + .
g 10} —— il il il]
[}
= 100k L L L L == L L L L == L L L L + L L L L E
streete lastoff allon locality streete lastoff allon locality streete lastoff allon locality streete lastoff allon locality
v =0.05 ~ = 0.06 v =0.07 v =0.08

Figure 5: Number of links on with different values of +.

D. Impact on Energy Efficiency

Figure 5 shows the mean number of links on during the
50 seconds of simulation run. Each boxplot represents the
distribution of the means over 100 runs of simulations for a
corresponding . Each mean is calculated from samples taken
every 1 second, i.e. it is a mean of 50 values: number of links
on at t=1, t=2, ..., t=50.

When links are only turned on, the lower the boxplot,
the more conservative the algorithm is, avoiding to turn-on
unnecessary links. If all the links have the same transmission
rate and energy consumption, turning-on less links results in
less energy being consumed. Hence, the energy efficiency is
better. Moreover, when used together with a turn-off algorithm,
avoiding to turn-on unneeded links allows to avoid waking-
up network interfaces which will be turned-off shortly after,
effectively reducing the number of interface’s power cycles.

It may be seen that with low values of -, all the algorithms
behave similarly. This is due to the network rarely reaching a
congested state. In the small number of cases where turning
on was necessary, the congestion was avoided by activating
links at a time near the end of the simulation.

The allon algorithm is worse than others as it unnecessarily
turns on all the network at the smallest sign of congestion.
This tendency is also preserved at highest values of ~.

It is interesting to compare how our algorithm behaves when

compared to other conservative algorithms like lastoff. Even
though all the flows in the network increase by the same factor
each second, turning on the last turned-off link is not the best
solution. Actually, it will turn-on too many links. STREETE-
ON is able to solve the congestion with less links.

As expected, in terms of energy efficiency, the locality
algorithm does not perform well. It turns-on many links around
the place of congestion, which is sub-optimal. Hence, we can
affirm that STREETE-ON can achieve better energy-efficiency
for a network while avoiding congestion as good as the other
analysed algorithms.

E. Computational Time

The simulations were performed on an Intel Xeon E5-2620
v2 processor running at 2.10GHz. The average execution time
on all the simulation runs of STREETE-ON was of 33ms on
the Germany 50 network. The maximum recorded execution
time of the algorithm reached 150ms.

The implementation using the state of art dynamic graph all-
pair shortest path algorithm showed a very promising result,
reducing the computational time from a couple of seconds
observed in the case of a naive implementation with statistic
Dijkstra computations.

The values of the executed time were computed via standard
C++ tools: std::clock() and the CLOCKS_PER_SEC constant.

V. LIMITATIONS OF THE ANALYSIS

Multiple factors can change the outcome of the presented
analysis. For example, the speed at which traffic increases
may influence packet loss. We analysed this factor using the
parameter ~y, but under very fast traffic increase, such as when
a link utilisation abruptly goes from O to 1, the following
factors should be considered:

o Time to detect the traffic increase on network nodes.
o Network propagation time to inform the controller.
o Execution time of the algorithm.

For any chosen algorithm, the first two factors will be
equal and can hardly be optimised. However, the last factor
depends on the computational complexity of the algorithm.
The algorithm D-RRL used in our solution has an expensive
worst-case complexity, but the worst-case does not happen in
practice. Although preliminary tests on a 100-node network
showed that the computational time of our solution starts to
exceed one second — which is still a good result — we think
that it may become a limiting factor in very large networks.

An interesting observation about the use of shortest path
routing is that in some cases the congestion is worsened
by turning on a link, which may not be intuitive. Figure 6
illustrates such a case. Two flows are routed in the network
and, when the link id is down, the flows take a detour over
longer paths. As a result, none of the links is at critical load.
If we turn-on the link, the flows are rerouted over hd and
its utilisation rises almost leading to a congestion. The lines
24 - 27 of STREETE-ON algorithm (Alg. 1) are used as a
workaround to avoid never turning the links on. However, this
solution is disputable.

—0 =0 L =0.45 L =0.45

c u d u e c u 3] d u 3] e
. ~ S
=) =} - : ~
] Il =] : =}
< s 0 : 0
o 3 : 3

b T o (b : !
N > : w
=3) < : <
Il [S H =}
w =0.45 w =0.45 s w =0 i w=0 =

a g a h g

fa,qa= fg.a=045-c

Figure 6: Congestion avoidance by turning off

The analysis is performed here considered homogeneous
links, whereas STREETE-ON can be extended to consider
heterogeneous link speeds. We have chosen the value 0.8 for
A empirically, where a link is considered at high load and
therefore close to congestion when it is 80% utilised. With
smaller values of A, less links will be turned off. With higher
values, there is more probability to start dropping packets in
router queues.

VI. CONCLUSION

Solutions for improving the energy efficiency of wired
computer networks propose to turn the links off to reduce
energy consumption. This paper proposed a reactive algorithm
which dynamically monitors the network utilisation and turns

the links back on when a state close to congestion is detected.
The algorithm analyses simultaneously the actual state of the
network with links turned off (g’), and the all-on state (G)
in order to choose the best candidate links to be switched
on. It provides a fast solution which rapidly reacts to a risk
of congestion while avoiding to turn-on too many links, thus
keeping a low energy consumption by the network.

ACKNOWLEDGMENTS

This work is financially supported by the CHIST-ERA
STAR [17] project.

REFERENCES

[1] D. Kilper, “Energy challenges in access and aggregation networks.”
Symposium: Communication networks beyond the capacity crunch, May
2015. Accessed: sep/2015.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” in Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, (New York, NY, USA), pp. 3-14, ACM,
2013.

[3] “Geant network looking glass and usage map.” https://tools.geant.net/
portal/. Accessed: sep/2015.

[4] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright,
“Power awareness in network design and routing,” in INFOCOM 2008.
The 27th Conference on Computer Communications. IEEE, April 2008.

[5] W. Van Heddeghem, B. Lannoo, D. Colle, M. Pickavet, and P. De-
meester, “A quantitative survey of the power saving potential in ip-over-
wdm backbone networks,” Communications Surveys Tutorials, IEEE,
vol. PP, no. 99, pp. 1-1, 2014.

[6] R. De Schmidt, R. Sadre, and A. Pras, “Gaussian traffic revisited,” in
IFIP Networking Conference, 2013, pp. 1-9, May 2013.

[71 Y. Yang, M. Xu, and Q. Li, “Towards fast rerouting-based energy
efficient routing,” Computer Networks, vol. 70, pp. 1 — 15, 2014.

[8] A. Bianzino, L. Chiaraviglio, and M. Mellia, “Grida: A green distributed
algorithm for backbone networks,” in Online Conference on Green
Communications (GreenCom), 2011 IEEE, pp. 113-119, Sept 2011.

[9] F. Francois, N. Wang, K. Moessner, and S. Georgoulas, “Optimizing
link sleeping reconfigurations in isp networks with off-peak time failure
protection,” Network and Service Management, IEEE Transactions on,
vol. 10, pp. 176-188, June 2013.

[10] M. Kamola and P. Arabas, “Shortest path green routing and the impor-
tance of traffic matrix knowledge,” in Digital Communications - Green
ICT (TIWDC), 2013 24th Tyrrhenian International Workshop on, pp. 1—
6, Sept 2013.

[11] C. Demetrescu and G. F. Italiano, “Experimental analysis of dynamic all
pairs shortest path algorithms,” ACM Trans. Algorithms, vol. 2, pp. 578—
601, Oct. 2006.

[12] G. Ramalingam and T. Reps, “An incremental algorithm for a generaliza-
tion of the shortest-path problem,” J. Algorithms, vol. 21, pp. 267-305,
Sept. 1996.

[13] R. Carpa, O. Gluck, L. Lefevre, and J.-C. Mignot, “Improving the energy
efficiency of software-defined backbone networks,” Photonic Network
Communications, pp. 1-11, 2015.

[14] C. Filsfils, S. Previdi, A. Bashandy, B. Decraene, S. Litkowski, and
R. Shakir, “Segment routing architecture", draft-ietf-spring-segment-
routing-06 (work in progress),” October 2015.

[15] “OMNeT++ Discrete Event Simulator.” https://omnetpp.org/.

[16] “SNDIib: a library of test instances for Survivable fixed telecommuni-
cation Network Design.” http://sndlib.zib.de/.

[17] “CHIST-ERA STAR (SwiTching And tRansmission) project.” http://
www.chistera.eu/projects/star.

