
HAL Id: ensl-00697621
https://ens-lyon.hal.science/ensl-00697621

Submitted on 15 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping Tightly-Coupled Applications on Volatile
Resources

Henri Casanova, Fanny Dufossé, Yves Robert, Frédéric Vivien

To cite this version:
Henri Casanova, Fanny Dufossé, Yves Robert, Frédéric Vivien. Mapping Tightly-Coupled Applications
on Volatile Resources. 2012. �ensl-00697621�

https://ens-lyon.hal.science/ensl-00697621
https://hal.archives-ouvertes.fr

Mapping Tightly-Coupled Applications

on Volatile Resources

Henri Casanova1, Fanny Dufossé2, Yves Robert2,3 and Frédéric Vivien2

1. Univ. of Hawai‘i at Manoa, Honolulu, USA, henric@hawaii.edu

2. Ecole Normale Supérieure de Lyon, France

{FannyDufosse|Yves.Robert|Frederic.Vivien}@ens-lyon.fr

3. University of Tennessee Knoxville, USA

Abstract—Platforms that comprise volatile processors,
such as desktop grids, have been traditionally used for
executing independent-task applications. In this work we
study the scheduling of tightly-coupled iterative master-
worker applications onto volatile processors. The main
challenge is that workers must be simultaneously available
for the application to make progress. We consider two
additional complications: one should take into account that
workers can become temporarily reclaimed and, for data-
intensive applications, one should account for the limited
bandwidth between the master and the workers.

In this context, our first contribution is a theoretical
study of the scheduling problem in its off-line version, i.e.,
when processor availability is known in advance. Even in
this case the problem is NP-hard. Our second contribution
is an analytical approximation of the expectation of the
time needed by a set of workers to complete a set of tasks
and of the probability of success of this computation. This
approximation relies on a Markovian assumption for the
temporal availability of processors. Our third contribution
is a set of heuristics, some of which use the above
approximation to favor reliable processors in a sensible
manner. We evaluate these heuristics in simulation. We
identify some heuristics that significantly outperform their
competitors and derive heuristic design guidelines.

I. INTRODUCTION

In this paper we study the problem of scheduling

parallel applications onto volatile processors. We target

typical scientific iterative applications in which a mas-

ter process parallelizes the execution of each iteration

across worker processes. Each iteration requires the

execution of a fixed number of tasks, with a global

synchronization at the end of each iteration. In [1] we

have studied this problem when these tasks are indepen-

dent. In this work instead we consider tightly-coupled

tasks that exchange data throughout each iteration, thus

requiring that workers be simultaneously available. This

work and that in [1] cover the two extremes of the

parallelization spectrum, and are together representative

of a large class of scientific applications.

We consider a platform that consists of processors

that alternate between periods of availability and periods

of unavailability. When available each processor runs

a worker process, and a master process can choose to

enroll a subset of these workers to participate in the

application execution. Worker unavailability can be due

to software faults, in which case unavailability may last

only the time of a reboot. A hardware failure can lead to

a longer unavailability period, until a repair is completed

and followed by a reboot. We consider a third source

of processor unavailability, which comes from cycle-

stealing scenarios: when a processor is contributed to

the platform by an individual owner, this owner can

reclaim it at any time without notice for some unknown

length of time. A difference here is that the processor

is merely preempted (as opposed to being terminated)

until the processor is no longer reclaimed. A worker

process on this processor can later resume its computa-

tion. Accordingly, we use a 3-state availability model:

UP (available), DOWN (crashed, computation is lost)

and RECLAIMED (preempted, but computation can

resume later). Our platform model also accounts for

the fact that, due to bandwidth limitation, the master

is only able to communicate simultaneously with a

limited number of workers (to send them the application

program as well as task data). This limitation corre-

sponds to the bounded multi-port model [2]. It turns out

that limiting the communication capacity of the mas-

ter dramatically complicates the design of scheduling

strategies. But without this limitation it would be in

principle possible to enroll thousands of new processors

at each iteration, which is simply not feasible in practice

even if this many processors are available.

Given the above application and platform models,

and given a deadline (typically expressed in hours or

days), the scheduling problem we study is that of max-

imizing the expected number of application iterations

successfully completed before the deadline. Informally,

during each iteration, one must use the “best” processors

among those that are simultaneously UP ; these could

be the fastest ones, or those expected to remain UP for

the longest time. In addition, with processors failing,

becoming reclaimed, and becoming UP again later, one

has to decide when and how to change the set of cur-

rently enrolled processors. Each such change comes at a

price: first, the application program needs to be sent to

newly enrolled processors, thereby consuming some of

the master’s bandwidth; second, and more importantly,

iteration computation that was only partially completed

is lost due to the tight coupling of tasks.

Our contribution in this work is threefold. First, we

determine the complexity of the off-line scheduling

problem, i.e., when processor availability is known in

advance. Even with such knowledge the problem is

NP-hard. Second, we compute approximations of the

expectation of the time needed by a set of processors to

complete a set of tasks and of the probability that this

computation succeeds. These approximations provide a

sound basis for making sensible scheduling decisions.

Third, we design several on-line heuristics that we

evaluate in simulation. Some of these contributions

assume Markovian processor availability, which is not

representative of real-world platforms but provides a

tractable framework for obtaining theoretical and ex-

perimental results in laboratory conditions.

This paper is organized as follows. In Section II,

we discuss related work. We give a formal definition

of the application and platform models in Section III.

In Section IV we define the scheduling problem and

establish off-line complexity results. In Section V,

we introduce a 3-state Markovian model of processor

availability, and use this model to compute approxima-

tions of relevant probabilistic quantities. In Section VI,

we describe several heuristics for solving the on-line

scheduling problem, which are evaluated in simulation

in Section VII. Finally, we summarize our results and

provide perspectives on future work in Section VIII.

II. RELATED WORK

Iterative applications that can be implemented in

master-worker fashion are widely used in computational

linear algebra for sparse linear systems (e.g., [3]), eigen-

value problems (e.g., [4]), image processing (e.g., [5]),

signal processing (e.g., [6]), etc.

Several authors have proposed scheduling approaches

for such applications (see, e.g., [7], [8], [9]). In this

work we consider volatile compute resources, such as

those found in desktop grids, whose volatility has been

studied in [10], [11], [12], [13]. Several authors have

studied the “bag-of-tasks” scheduling problem on these

platforms, either at an Internet-wide scale or within an

Enterprise [14], [15], [16], [17], [18], [19], [20], [21].

Most of these works propose simple greedy scheduling

algorithms that rely on mechanisms to select proces-

sors based on static criteria (e.g., processor clock-rates,

benchmark results, time zone), on simple statistics of

past availability [14], [16], [19], [15], and on predictive

statistical models of availability [20], [21], [17], [18].

These criteria are used to rank processors but also to

exclude them from consideration [14], [16]. The work

in [18] is particularly related to our own in that it uses

a Markov model of processor availability (but without

accounting for temporary preemption). Given the wealth

of scheduling approaches, in [19] the authors propose

to automatically instantiate the parameters that together

define the behavior of a generic scheduling algorithm.

Most works published in this area are of a pragmatic

nature and few theoretical results have been sought or

obtained (one exception is the work in [22]).

A key aspect of our work is that we seek to develop

scheduling algorithms that explicitly manage the mas-

ter’s bandwidth. Limited master bandwidth is a known

issue for desktop grid computing [23], [24], [25] and

must therefore be addressed even though it complicates

the scheduling problem. To the best of our knowledge,

except our previous study for independent tasks [1], no

previous work has made such an attempt.

III. MODELS AND ASSUMPTIONS

We assume that time is discretized into a sequence of

time-slots of arbitrarily chosen duration. For simplicity

when we say “at time t” we imply “at discrete time-slot

t”. Our approach is agnostic to the time-slot duration.

The duration that makes sense in practice depends on

the application and/or platform, ranging from seconds

to minutes or possibly hours.

A. Application model

We consider an application that performs a sequence

of iterations. Each iteration consists of executing m
tasks and ends with a global synchronization. All m
tasks are identical (in terms of computational cost)

and communicate throughout the iteration execution.

Therefore, all tasks must make progress at the same

rate. If a task is terminated prematurely (due to a

worker failure), all computation performed so far for

the current iteration is lost, and the entire iteration

has to be restarted. If a task is suspended (due to a

worker becoming temporarily reclaimed), then the entire

execution of the iteration is also suspended. Due to

the global synchronization, there is no overlap between

communication and computations. We thus consider that

an iteration proceeds in two phases: a communications

phase and a computation phase. Finally, before being

able to compute, a worker must acquire the application

code once (e.g., binary executable, byte code), of con-

stant size Vprog in bytes, and the input data for each task

and iteration, of constant size Vdata in bytes.

B. Platform model

The platform comprises p processors. Since each

processor executes a worker process, we use the terms

processor and worker interchangeably. Worker Pq ,

q = 1, . . . , p, can be in one of three states (UP ,

RECLAIMED or DOWN), and transitions between

these states occur for each processor at each time-slot

independently of the other processors. More precisely:

• Any UP processor can become DOWN or

RECLAIMED .

• Any UP or RECLAIMED processor can become

DOWN . It then loses the application program and

all the data for its current tasks. If it was computing

some of these tasks, these computations are lost.

• Any UP processor can become RECLAIMED .

The processor does not lose any state. If it was

receiving the application program or data for a

task, the communication is temporarily suspended.

If it was computing a task, the computation on all

processors is temporarily suspended.

We denote by Sq the vector that gives the state of Pq

at each time-slot starting with time-slot 0.

Pq computes a task in wq time-slots if it remains UP .

If wq = w for each processor Pq , then the processors

are homogeneous. The master has network bandwidth

BW and communicates with a worker with bandwidth

bw, meaning that we assume same capacity links from

the master to each worker. In this work we equate

bandwidth with data transfer rate, acknowledging that in

practice the data transfer rate is a fraction of the physical

bandwidth. Let nprog be the number of workers receiving

the program at time t, and let ndata be the number of

workers receiving the input data of a task at time t. The

constraint on the master’s bandwidth is simply written

as nprog + ndata ≤ ncom = ⌊BW/bw⌋. Indeed, consider

a worker on processor Pq that is communicating at

time t. Either Pq is receiving the program, or it is

receiving data for a task. In both cases, it does this

at data transfer rate bw. Overall, the master can execute

only a limited number ncom of such communications

simultaneously. The time for a worker to receive the

program is Tprog = Vprog/bw, and the time to receive the

data is Tdata = Vdata/bw. For simplicity we assume that

Tprog and Tdata consist of integral numbers of time-slots.

We also assume that the master is always UP , which

can be enforced by using, for instance, two dedicated

servers with a primary backup mechanism.

C. Application execution model

Let config(t) denote the set of workers enrolled by

the master, or configuration, at time t. The configuration

is determined by an application scheduler, and in this

work we propose algorithms to be used by this sched-

uler. To complete an iteration, enrolled workers must

progress concurrently throughout the computations. One

worker may be assigned several tasks and execute

them concurrently if it has enough memory to do so.

Formally, we define for each worker Pq a bound µq

on the maximum number of tasks that it can execute

concurrently. We assume that
∑p

q=1 µq ≥ m, otherwise

the configuration cannot execute the application. The m
tasks are mapped onto k ≤ m workers. Each enrolled

worker Pq is assigned xq tasks, where
∑k

q=1 xq = m.

To be able to compute their tasks, the k enrolled workers

must have received the application program and all

necessary data. More precisely:

• Each enrolled worker Pq must receive the program,

unless it has received it at some previous time and

has not be DOWN since then.

• In addition, each worker Pq must receive xq data

messages (one per task) from the master. Suppose

that since the begin of the current iteration Pq has

received x′
q data messages. At least (xq − x′

q)Tdata

time-slots are needed for this communication, and

likely more since the master can be engaged in at

most ncom concurrent communications.

Overall, the computation can start at a time t only if

each of the k enrolled workers is in the UP state, has

the program, has the data of all its allocated tasks, and

has never been in the DOWN state since receiving

these messages. Because tasks must proceed in locked

steps, the execution goes at the pace of the slowest

worker. Hence the computation of an iteration requires

maxq(xqwq) time-slots of concurrent computations (not

necessarily consecutive, due to workers possibly being

reclaimed). Consider the interval of time between time

t1 and time t2 = t1+maxq(xqwq)+ t′−1 for some t′.
For the iteration to be successfully completed by time

t2, between t1 and t2 there must be maxq(xqwq) time-

slots for which all enrolled workers are simultaneously

UP , and there may be t′ time-slots during which one

or more workers are RECLAIMED .

The scheduler may choose a new configuration at

each time t. If at least one worker in config(t) becomes

DOWN , the scheduler must select another configura-

tion and restart the iteration from scratch. Even if all

workers in config(t) are UP , the scheduler may decide

to change the configuration because more desirable (i.e.,

faster, more reliable) workers have become available.

Let Pq be a newly enrolled worker at that point, i.e.,

Pq ∈ config(t+ 1) \ config(t). Pq needs to receive the

program unless it already has a copy of it and has not

been DOWN since receiving it. In all cases, Pq needs

to receive task data, i.e., xq messages of Vdata bytes.

This holds true even if Pq had been enrolled at time

t′ < t but was un-enrolled since then. In other words,

any interrupted communication must be resumed from

scratch if the worker became DOWN or was removed

from the configuration.

An example iteration execution with m = 5 tasks

and p = 5 processors is shown in Figure 1. For this

example the processors are heterogeneous with ∀1 ≤
i ≤ 5, wi = i, ncom = 2, Tprog = 2, and Tdata = 1.

I

CICIDDP

P

I P

I D D

D

I

C

C I

I

I I

C

C

P

P

P

P

P

1

2

3

4

5

I

phase

Communication

Computation

interruption

Figure 1. Example iteration execution. White means UP , gray means
RECLAIMED , and black means DOWN . P means “receiving
the program,” D means “receiving the data for a task,” C means
“computing,” and I means “idle.”

In the schedule, two tasks are assigned to P2 and P3,

and one task is assigned to P4, for a workload of 4
time slots on P2, 6 time slots on P3, and 4 time slots

on P4. As a result, the iteration computation in this

configuration requires 6 time-slots with all processors

in the UP state, and during each of these time-slot 1/6
of each task is executed. This configuration is selected

at time 1. At this time, P1 and P5 are not UP , so they

cannot be included in the configuration.

The communication phase of this iteration is executed

between time 1 and time 7. At time 1, the 3 processors

selected can receive data, but because of the bandwidth

constraint P4 remains idle during the first 3 time-

seps. Processor P3 is temporarily reclaimed after it

has downloaded the application program. Due to the

bandwidth constraint, processors are idle while others

download task data (e.g., P3 is idle between time 4 and

time 5). At time 7, all 3 processors have downloaded the

application program and the data for all tasks assigned

to them. They all begin computing. At time 10, P2 is

temporarily reclaimed and the computation is suspended

with half of the computation of each task completed.

When P2 becomes available again, at time 12, P3 has

been reclaimed and the computation cannot resume

immediately. P3 becomes available again at time 13,

P2 and P4 are UP , and the computation continues.

If a processor had become DOWN , say, at time 14,

all the computation would have been lost and the

communication phase would have been restarted from

scratch. At time 16, the processors synchronize and a

new iteration can start. At that time processors P1 and

P5 may be included in the configuration.

IV. OFF-LINE COMPLEXITY

The scheduling problem is to maximize the expected

number of completed application iterations before time

N , where N is a specified deadline. In this section,

we assess the complexity of the off-line version of

this problem, assuming full knowledge of future worker

states. In other words, Sq[j] is known for 1 ≤ q ≤ p
and 1 ≤ j ≤ N . We show that the simplest off-line and

deterministic versions of the problem are NP-hard.

Fixed number of workers: Consider the problem with

no communications (Tprog = Tdata = 0), and identical

workers with wq = w and µq = µ = 1. m workers

must be enrolled to complete an iteration. The problem

reduces to finding w time-slots such that there exist m
workers that are simultaneously UP during all these w
time-slots. We call this version of the problem OFF-

LINE-COUPLED (µ = 1).

Flexible number of workers: Consider the problem

with no communications (Tprog = Tdata = 0), and

identical processors with wq = w and µq = µ = +∞
(in fact µ = m is sufficient). The problem is less

constrained than OFF-LINE-COUPLED (µ = 1). Either

one finds m processors that are simultaneously UP

during w time-slots, or one finds ⌈m
2 ⌉ workers that

are simultaneously UP during 2w time-slots, or one

finds ⌈m
3 ⌉ workers that are simultaneously UP during

3w time-slots, and so on. We call this version of the

problem OFF-LINE-COUPLED (µ = +∞).

Theorem 4.1: Problems OFF-LINE-COUPLED (µ =
1) and OFF-LINE-COUPLED (µ = ∞) are NP-hard.

The proof is provided in Section A of the appendix.

V. ANALYTICAL APPROXIMATIONS

In this section, we compute the expectation of the

time needed by a configuration to compute a given

workload conditioned on this computation being suc-

cessful (i.e., with no worker becoming DOWN), as well

as the probability of success. Intuitively, these quantities

seem relevant for developing scheduling heuristics that

account for the need for workers to be UP simulta-

neously and for workers that can become temporarily

RECLAIMED . To compute the above expectation and

probability, we introduce a Markov model of processor

availability. The availability of processor Pq is described

by a 3-state recurrent aperiodic Markov chain, defined

by 9 probabilities: P
(q)
i,j , with i, j ∈ {u, r, d}, is the

probability for Pq to move from state i at time-slot t to

state j at time-slot t+ 1, which does not depend on t.
We are aware that the Markov, i.e., memory-less,

assumption for processor availability does not hold in

practice. For instance, several authors have observed

that the duration of availability intervals in production

desktop grids is often far from being exponentially

distributed for a 2-state scenario in which processors

are either UP or DOWN [10], [26], [11], [12], [20].

Unfortunately, there is no consensus in the literature on

a realistic model, even though some of these studies

may suggest semi-Markov models with approximately

Weibull or Log-Normal holding times. Deriving a re-

alistic 3-state statistical model of processor availability

is thus an open research question that is outside the

scope of this work. Instead, we opt for a Markov

model because it is simple and lends itself to tractable

analysis. This model gives us a framework in which

to design heuristics that trade off worker speed for

reliability. Furthermore, it allows us to evaluate our

trade-off approaches in “laboratory conditions.”

A. Probability of success and expected duration of a

computation

Consider a set S of workers all in the UP state at

time 0. This set is assigned a workload that requires

W time-slots of simultaneous computation. To complete

this workload successfully, all the workers in S must be

simultaneously UP during another W − 1 time-slots.

They can possibly become RECLAIMED (thereby

temporarily suspending the execution) but must never

become DOWN in between. What is the probability of

the workload being completed? And, if it is successfully

completed, what is the expectation of the number of

time-slots until completion?

Definition 1: Knowing that all processors in a set S

are UP at time-slot t1, let P
(S)
+ be the conditional

probability that they will all be UP simultaneously

at a later time-slot, without any of them going to

the DOWN state in between. Formally, knowing that

∀Pq ∈ S, Sq[t1] = u, P
(S)
+ is the conditional probability

that there exists a time t2 > t1 such that ∀Pq ∈
S, Sq[t2] = u and Sq[t] 6= d for t1 < t < t2 .

Definition 2: Let E
(S)(W) be the conditional ex-

pectation of the number of time-slots required by a

set of processors S to complete a workload of size

W knowing that all processors in S are UP at the

current time-slot t1 and none will become DOWN

before completing this workload. Formally, knowing

that Sq[t1] = u, and that there exist W − 1 time-slots

t2 < t3 < · · · < tW , with t1 < t2, Sq[ti] = u for

i ∈ [2,W], and Sq[t] 6= d for t ∈ [t1, tW], E(S)(W) is

the expectation of tW − t1 + 1 conditioned on success.

Theorem 5.1: It is possible to approximate the values

of P
(S)
+ and E(S)(W) numerically up to an arbitrary

precision ε in fully polynomial time.

Proof Sketch. Consider a set S of processors, all

available at time slot 0. Let P
(q)

u
t
→u

be the probability

that a processor Pq that was UP at time 0 is UP again

at time t, without having been DOWN in between, and

let P
(S)

u
t
→u

=
∏

Pq∈S P
(q)

u
t
→u

. Let Eu(S) =
∑

t>0 P
(S)

u
t
→u

.

Eu(S) can be approximated to a precision ǫ in time

polynomial in 1/ǫ. Then, P
(S)
+ = Eu(S)

1+Eu(S) if , in

set S, at least one processor has a nonzero probabil-

ity of going DOWN , and P
(S)
+ = 1 otherwise. Let

A(S) =
∑

t>0 t × P
(S)

u
t
→u

. A(S) can be approximated

to a precision ǫ in time polynomial in 1/ǫ. Then,

E(S)(W) =
1+(W−1)E(S)

c

(P
(S)
+)W−1

with E
(S)
c =

A(S)
(

1−P
(S)
+

)

1+Eu(S) .

The complete proof is provided in the appendix. ⊓⊔

B. Probability of success and expected duration of a

communication

The previous section gave approximations for the

probability of success and conditional expected duration

for computations. Unfortunately, similar approximations

cannot be obtained for communications due to complex-

ity added by the ncom constraint. Instead, we resort to a

coarser approximation as explained hereafter. Let S be

a set of enrolled workers. For worker Pq ∈ S, let nq

be the number of time-slots of communication needed

to receive the application program and all the data of

its allocated tasks. Suppose first that |S| ≤ ncom. In

this case, the expected communication time on worker

Pq , Eq , can be estimated precisely reusing the result

in the previous section: Eq = E(Pq)(nq). We then es-

timate the expected communication time of the current

configuration as E
(S)
comm = maxPq∈S{E

(Pq)(nq)} . In

the case |S| ≥ ncom, obtaining an estimate close to

the actual expected communication time seems out of

reach. Instead, we use a coarser estimation: E
(S)
comm =

max

{

maxPq∈S

{

E(Pq)(nq)
}

,

∑

Pq∈S
nq

ncom

}

.

Let P
(Pq)
ND (t) denote the probability that worker Pq

that was UP at time t′ does not become DOWN be-

tween time t′ and time t′+t. The probability of success

is then estimated as P
(S)
comm =

∏

Pq∈S P
(Pq)
ND (E

(S)
comm) .

The expression for P
(S)
comm does not take into account

the time needed after the end of all communications for

all workers to be UP simultaneously. The probability

of success of an iteration is estimated by multiplying

the probability of success of the communications and

the probability of success of the computations.

VI. ON-LINE HEURISTICS

We propose heuristics for solving the on-line version

of our scheduling problem, i.e., assuming no knowledge

of future processor states. Conceptually, we distinguish

between two classes of heuristics. Passive heuristics

conservatively keep current processors active as long

as possible. In other words, the current configuration

is changed only when one of the enrolled processors

becomes DOWN . In this case, all previously executed

work is lost. However, a worker that has not become

DOWN but has already received task data, can reuse

that data if the scheduler reassigns tasks to it. Proactive

heuristics allow for a complete reconfiguration even if

no worker fails, possibly aborting ongoing computation

if a better configuration is found. This makes it possible

for an iteration to never complete. A criterion must

thus be derived to decide whether and when such an

aggressive reconfiguration is worthwhile. Our proactive

heuristics are defined by a pair (criterion, passive heuris-

tic). When a new configuration is computed using the

heuristic, it is compared to the current configuration

according to the criterion. If the new configuration is

better than the current one, then it is launched, leading

to new communications and task allocations. Otherwise,

the execution continues with the current configuration

for an additional time slot.

We also include results for a baseline RANDOM

heuristic that allocates tasks to UP processors randomly

using a uniform distribution.

A. Passive heuristics

Passive heuristics assign tasks to workers, which must

be in the UP state, one by one until m tasks are

assigned. Each task is assigned to a worker according

to a criterion that defines the heuristic. As described

hereafter, we consider four different criteria: probability

of success, expected completion time, estimated yield,

and estimated apparent yield.

• IP (Incremental: Probability of success) – This

heuristic attempts to find configurations with high

probability of success. The next task is assigned to

the worker such that the probability of success of

all currently assigned tasks (including the new one)

is maximized. More precisely, consider the set S of

workers with at least one task already assigned. For

each worker Pq , either in S or not, we compute the

probability P (S)(q) of success of the communication

and the computation if the additional task is assigned

to Pq , using the results of Section V: P (S)(q) =

P (S∪{Pq})(Wq)×P
(S∪{Pq})
comm with Wq the maximal load

in S∪{Pq} with an additional task on Pq . We assign the

next task to worker Pq0 , with q0 = ArgMax
{

P (S)(q)
}

.

• IE (Incremental: Expected completion time) – This

heuristic attempts to find fast configurations, without

considering reliability. The next task is assigned to the

worker that minimizes the expected execution time of

the iteration. More precisely, consider the set S of

workers with at least one task already assigned. For each

worker Pq , either in S or not, we compute the expected

communication time E
(S∪{Pq})
comm and the expected com-

putation time E(S∪{Pq})(Wq) with an additional task

on Pq . We obtain the expected duration of the iteration

E(S)(q) = E
(S∪{Pq})
comm +E(S∪{Pq})(Wq). We assign the

next task to worker Pq0 , with q0 = ArgMin
{

E(S)(q)
}

.

• IY (Incremental: Expected yield) – This heuristic

assigns the next task to the worker that maximizes the

yield of the configuration. The yield is the expected

value of the inverse of the execution time of the

current iteration, which we estimate as follows. For

a given configuration with probability of success P
and expected completion time E for an iteration that

has already been running for t time slots, the yield is

estimated as Y = P
E+t

. Intuitively, we expect the yield

to achieve a trade-off between reliability (probability

of success) and execution speed. Consider the set S
of workers with at least one task already assigned. For

each processor Pq , either in S or not, we compute the

expected yield with an additional task on Pq: let P (S)(q)
be the probability computed for heuristic IP, E(S)(q)
be the expected completion time computed for heuristic

IE, and t be the time spent since the beginning of the

current iteration. We assign the next task to worker Pq0 ,

with q0 = ArgMax
{

P (S)(q)
t+E(S)(q)

}

.

• IAY(Incremental: Expected apparent yield) – The

yield only takes into account the time already spent in

the current iteration. It could be worthwhile to consider

only future work, i.e., the remaining time until iteration

completion. To this end we define the apparent yield

as AY = P
E

. Using the same notations as for heuristic

IY, we assign the next task to processor Pq0 with q0 =

ArgMax
{

P (S)(q)
E(S)(q)

}

.

B. Proactive heuristics

Our proactive heuristics are designed as follows.

Consider an application executing on a platform using

a passive heuristic H and criterion C at some time

t. The configuration config(t − 1) was selected by H
at time t′ ≤ t − 1 because of a configuration change

due to a proactive decision, due to a worker becoming

DOWN , or due to the beginning of a new iteration.

Let config1 = config(t′) = config(t − 1). At time t′,
the configuration was measured by criterion C with

value c′. Suppose that by time t no worker in this

configuration has failed. Between t′ and t, some work

may have been done: some communications may be

in process or completed, and computations may have

started. Consequently, the measure of this configuration

given by C should be updated to account for the

progress between t′ and t. Let c be the updated value

of criterion C for the current configuration. At step t,
a new configuration is computed from scratch using

heuristic H , as if no task were allocated to any worker.

Let config2 be this new configuration and c2 its measure

by C. If c ≥ c2, then the current configuration at time

t− 1 is kept for another time-slot: config(t) = config1.

Otherwise, the current configuration is interrupted, and

the new configuration is config(t) = config2.

For certain criterion choices, a heuristic could diverge

and continually change the configuration, even with

workers that are reliably UP . To avoid this divergence,

proactive criteria have to respect the following con-

straint: a given configuration that has been running

for t + 1 time-slots must be better for the proactive

criterion than the same configuration running for t time

slots. With this constraint, all possible configurations

are ordered by their value for the selected criterion

at the beginning of the iteration, and a lower-ranked

configuration in this order cannot be chosen to replace

the current configuration. As the number of possible

configurations is finite, no proactive heuristic can di-

verge. The four criteria used to define passive heuristics

in the previous section meet this constraint. However,

AY (Apparent Yield) leads to many (unnecessary) con-

figuration changes before converging, while the other

criteria should be stable. Hence, for the proactive crite-

rion C, we only retain P (Probability of success), E

(Expected completion time) and Y (Expected yield).

Any passive heuristic H can be used as the building

block for a proactive heuristic. We thus obtain 3 × 4
proactive heuristics named C-H where C ∈ {P, E, Y}
and H ∈ {IP, IE, IY, IAY}, plus the RANDOM heuristic.

VII. EXPERIMENTAL EVALUATION

A. Methodology

To evaluate our heuristics we use a discrete-event

simulator. (The simulator is publicly available at

http://graal.ens-lyon.fr/∼fdufosse/changing platforms.

tar.gz). The input to the simulator are the values

for all the parameters listed in Section III. The

simulator implements temporal processor availability

as Markov processes as described in Section V. All

our experiments are for p = 20 processors. The

Markov model for processor availability is defined as

follows. For each processor Pq , we pick a random

value uniformly distributed between 0.90 and 0.99

for each P
(q)
x,x value (for x = u, r, d). We then set

P
(q)
x,y to 0.5 × (1 − P

(q)
x,x), for x 6= y. An experiment

is defined by the Markov model for each processor

and by three parameters: m, the number of tasks

per iteration; ncom, the constraint on the master’s

communication bandwidth; and a third parameter,

wmin, defined as follows. For each processor Pq , we

pick wq uniformly between wmin and 10 × wmin.

Tdata is set to wmin, meaning that the fastest processor

has a computation-communication ratio of 1. Tprog

is set to 5 × wmin, meaning that downloading the

program takes 5 times as much time as downloading

the data for a task. We define our experimental space as

(m,ncom, wmin) with m ∈ {5, 10}, ncom ∈ {5, 10, 20},

and wmin ∈ {1, 2, . . . , 10}. For each possible

instantiation of (m,ncom, wmin), we create 10 random

experimental scenarios so as to obtain different

instantiations of the various random parameters. Then,

for each experimental scenario, we run 10 trials where

each trial uses a different random number generator

seed to produce multiple realizations of the Markov

chain transitions. The total number of generated

problem instances is thus 2×3×10×10×10 = 6, 000.

We emphasize that our goal here is not to instantiate a

representative model for a desktop grid and application,

but rather to create arbitrary and simple synthetic

experimental scenarios that will make it possible to

highlight inherent strengths and weaknesses of our

proposed heuristics.

In all experiments, rather than fixing N , the deadline

in number of time-slots, we instead fix the number of

iterations to 10. The quality of an application execution

is then measured by the time needed to complete 10
iterations, or makespan. This problem is equivalent to

the problem of maximizing the number of iterations

before a deadline. It is also simpler to instantiate since

it does not require choosing a meaningful deadline,

which would depend on application and platform char-

acteristics. For some experimental scenarios and some

heuristics, the time needed to complete 10 iterations

successfully can be extremely large, making it im-

possible to obtain results in a reasonable amount of

time. Consequently, we limit the makespan to 1,000,000

seconds and declare that a heuristic fails if it reaches

this limit, and succeeds otherwise.

The makespans vary widely between problem in-

stances depending on processor availability patterns,

which requires that we define relative metrics for a

sound comparison of our heuristics. As expected, with

more tasks (larger m), the number of failures increases

for each heuristic. With m = 5, no heuristic fails for

more than 5 out of the 3,000 problems instances. With

m = 10, heuristics fail for up to 6% of the 3,000

problem instances. In both cases, IE is the most robust:

It fails only for 1 of the 3, 000 m = 5 instances, and

for 81 of the 3, 000 m = 10 instances. Importantly,

whenever heuristic IE fails, all the other heuristics

also fail. For this reason we use IE as a reference.

For a heuristic H , we compute the relative difference

(expressed in percentage) between the makespan that

it achieves for a given experimental scenario (averaged

over all 10 trials) and the one achieved by IE for the

same scenario, assuming that heuristic H succeeds. The

relative difference is defined as:

makespanH − makespanIE
min(makespanH ,makespanIE)

.

The denominator is always the makespan of the best

performing heuristic, so as to allow consistent compar-

isons. We denote this metric by %diff. We also count the

fraction of trials where heuristic H obtains a makespan

smaller than or equal to IE (denoted by %wins) and the

fraction of trials where heuristic H obtains a makespan

that does not exceed that of IE by more than 30%

(denoted by %wins30). We also report the standard

deviation over all scenarios (column %stdv).

Table I
RESULTS WITH m = 5 TASKS.

Heuristic #fails %diff %wins %wins30 stdv

Y-IE 2 -11.82 72.58 92.09 0.42
P-IE 2 -10.50 70.98 91.19 0.44
E-IAY 4 -10.40 64.75 85.15 0.77
E-IY 4 -3.40 59.91 81.64 0.80
IE 1 0.00 100.00 100.00 0.00
IAY 2 13.59 51.07 76.42 1.93
E-IP 4 19.35 47.73 69.69 0.98
IY 2 24.22 45.26 70.85 1.96
IP 2 52.03 34.79 58.54 2.11
E-IE 5 53.93 39.57 64.51 2.57
Y-IAY 3 99.75 53.89 70.77 5.55
Y-IY 3 113.01 49.22 66.80 5.73
P-IAY 3 125.27 50.28 67.33 6.08
Y-IP 2 145.05 38.56 55.54 5.90
P-IY 3 145.78 42.54 59.66 6.22
P-IP 2 176.92 36.92 52.00 6.61
RANDOM 0 2124.42 0.00 0.20 22.54

Table I shows results for m = 5 tasks, with heuristics

sorted by decreasing %diff. The number of failures for

all heuristics is shown in the first column of the table

and is at most 5 (recall that IS, the reference heuristic,

only fails for 1 instance). Consequently, although some

heuristics fail on some scenarios, these failures do not

have a large impact on our results.

These results show the efficiency of all our heuristic,

when compared with the RANDOM Heuristic. RANDOM

is on average more than 20 times worse than IE while

all other heuristics have a %diff less than 200%. As

seen in the table, only 4 heuristics lead to a %diff value

lower than that obtained by IE, with 3 of these heuristics

more than 10 points lower. These 4 heuristics are all

proactive. We conclude that the best proactive heuristics

are significantly better than the best passive heuristics.

Several observations can be made on the results in the

table. A first one is that using the yield as a heuristic

or a criterion is better than using the probability of

success. In other terms, heuristic C-IY is better than

heuristic C-IP, and heuristic Y-H is marginally better

than P-H (in this case an inspection of the simulation

traces shows that Y-H and P-H lead to mostly identical

executions). Everything else being equal, considering

the yield is better than considering the probability of

success because it accounts for the hosts’ compute

speeds. A second observation is that heuristic C-IAY

is better than heuristic C-IY, thus confirming that the

“apparent yield” has merit and is a direct improvement

of the yield metric. Anecdotally, while E-IY and E-

IAY obtain similar results for %wins and %wins30,

E-IAY is significantly better than E-IY on average. A

third observation is that although Y-IE and P-IE lead

to good results, all other proactive heuristics with the

same criteria (i.e., Y-H and P-H) rank last, with %diff

values reaching 100%. Finally, the key observation is

that the best heuristics (the top 5 heuristics, including

the reference IE) all account for expected execution time

either as a criterion for selecting a new configuration

(E-IAY, E-IY) or as a host selection mechanism (Y-

IE, P-IE, IE). A seemingly sensible expectation is thus

that E-IE would be very efficient. But instead, E-IE

leads to poor results, with on average makespan almost

more than 50% longer than that of IE, the fourth lowest

%wins value and the fifth lowest %wins30 value. The

reason for these poor aggregate results is that E-IE leads

to inefficient schedules for problem instances in which

the fastest processor is unreliable.

B. Results for m = 10

Table II
RESULTS WITH m = 10 TASKS FOR THE BEST EIGHT HEURISTICS.

Heuristic #fails %diff %wins %wins30 stdv

Y-IE 141 -10.33 71.35 88.42 0.54
P-IE 141 -8.62 69.64 87.23 0.55
E-IAY 178 -6.10 66.62 81.93 1.58
E-IY 176 8.04 61.90 77.87 3.07
E-IP 168 29.68 55.12 71.86 3.01
IAY 152 136.65 46.98 69.31 14.76
IY 152 147.77 42.06 64.47 14.76

In this section we discuss results for m = 10 tasks,

but only for the reference IE and those 7 heuristics

that achieve a %diff value below 50% (the largest

such value being in fact below 25%): Y-IE, P-IE, E-

IAY, E-IY, IAY, E-IP and IY. Results are shown in

Table II. Only two of these heuristics do not consider

expected completion time as a criterion: IAY and IY.

These two heuristics rank reasonably high in terms of

%diff with m = 5 tasks, but are over 130% with

m = 10 tasks. The ranking of the heuristics is almost

unchanged when compared to the m = 5 results, even

if %diff values are lower. When for m = 5 E-IY

leads to a negative %diff value, for m = 10 this value

becomes positive. For m = 10 only three heuristics

achieve positive %diff values: Y-IE, P-IE and E-IAY.

With m = 10, most heuristics fail for more than 5%

of the problem instances. Given that IE is the most

robust heuristic, it should come to no surprise that

those proactive heuristics that use IE lead to the lowest

number of failures. One conclusion from these results is

that Y-IE is only slightly less robust than IE (failing on

4.7% of instances as opposed to 2.7% for IE) but leads

to significantly better performance with a %diff value

above 11%, leading to a lower makespan for more than

72% of the instances, and leading to a makespan more

than 30% larger in less than 8% of the instances.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 1 2 3 4 5 6 7 8 9 10

 r
el

at
iv

e
di

st
an

ce

 wmin

E-IAY
E-IP
E-IY
IAY

IE
IY

P-IE
Y-IE

Figure 2. %diff for m = 10 tasks vs. wmin.

Figure 2 shows %diff values versus wmin for m = 10
tasks. wmin is a synthetic parameter we have defined

to instantiate our problem instances. Essentially a larger

wmin value means longer tasks and longer data trans-

fers, leading thus to a more “difficult” instance. These

results show that Y-IE is the best or close to the best

heuristic up to wmin ≈ 8. For large values of wmin

it is outperformed by other several other heuristics,

such as P-IE, but also by the reference heuristic IE.

IE is the best option for large values of wmin! An

intuitive explanation is that when the instance is dif-

ficult, meaning that the probability of success is low

due to long computations and communications, a good

way to obtain a short makespan is to try to find the

fastest workers and “hope for the best.” When looking

at the whole wmin range, P-IE appears like a good

alternative to Y-IE. For low wmin values it outperforms

IE significantly, and for large wmin it is outperformed

by it only marginally. Recall from Table II that Y-IE

and P-IE experience exactly the same number of failures

(141 failures out of the 3,000 instances).

VIII. CONCLUSION

Unlike previous work that has considered loosely-

coupled master-worker applications, in this work a

single processor failure can have a dramatic effect on

application execution. Furthermore, our problem for-

mulation includes a limit on the available bandwidth

from the master to the workers and the possibility for

processors to be temporarily reclaimed. We have proved

the problem to be NP-complete in an off-line setting,

i.e., with full knowledge of future processor states. By

assuming a Markov model of processor availability, we

have proposed polynomial time approximation schemes

to compute the expected completion time of a com-

putation and its probability of success. We have then

proposed 16 heuristics that are either passive (change

the set of enrolled processors only when a processor

failure occurs) or proactive (change the set of enrolled

processors when a better set is available even if no

failure occurs). These heuristics are easily defined as

combinations of two among four sensible metrics: prob-

ability of success, expected completion time, expected

yield and expected apparent yield.

All these heuristics widely outperform a baseline

heuristic that allocates tasks to processors randomly. In

addition, our simulation results shows that four of our

16 heuristics lead to significantly better results than the

remaining 12. Passive heuristic IE is the most robust,

which is why we have used it as a reference, but it

does not lead to the best makespans. Heuristic Y-IE,

which attempts to optimize expected execution time

while proactively deciding to change the set of enrolled

processors based on yield, leads to the best average

results. Heuristic P-IE, which changes configuration

based on probability of success, leads to more stable

performance across our set of experimental problem

instances as it is never significantly outperformed by IE.

The conclusion is that a proactive heuristic that selects

processors to maximize expected execution time and

changes configuration based on yield or probability of

success is promising.

We have made it plain that the Markov assumption for

processor availability is not meant to be representative

of real-world platforms. Nevertheless, faced with the

lack of an acknowledged and validated model, we have

opted for a Markov model. The advantage of this model

is that it is simple. It provides us with a tractable frame-

work in which we can not only develop heuristics but

also evaluate the merit of heuristical ideas in “laboratory

conditions.” If a more realistic model arises, then a next

step in this research would be to determine to which

extent the principles from our heuristics can be adapted

to the new model. Given that the results in Section V

rely on the Markov assumption heavily, it is unlikely

that similar results would hold in a non-Markovian

model. However, it may be possible to develop coarser

estimates of our four criteria in the new model so as to

design meaningful and effective heuristics. If no such

new model arises, then an interesting next step would

be to simply build a flawed Markov model based on

real-world processor availability traces, and investigate

how “wrong” the Markov heuristics are in a real-world

setting when compared to heuristics that have been pro-

posed in previous work that do not rely on sophisticated

probabilistic criteria for making scheduling decisions.

REFERENCES

[1] H. Casanova, F. Dufossé, Y. Robert, and F. Vivien,
“Scheduling parallel iterative applications on volatile
resources,” in IPDPS’2011, the 25th IEEE International
Parallel and Distributed Processing Symposium. IEEE
Computer Society Press, 2011, to appear.

[2] B. Hong and V. K. Prasanna, “Adaptive allocation of
independent tasks to maximize throughput,” IEEE TPDS,
vol. 18, no. 10, pp. 1420–1435, 2007.

[3] B. Uçar and C. Aykanat, “Partitioning sparse matrices for
parallel preconditioned iterative methods,” SIAM Journal
on Scientific Computing, vol. 29, no. 4, pp. 1683–1709,
2007.

[4] G. L. G. Sleijpen and H. A. V. d. Vorst, “A jacobi-
davidson iteration method for linear eigenvalue prob-
lems,” SIAM Review, vol. 42, no. 2, pp. pp. 267–293,
2000.

[5] Y. Censor, D. Gordon, and R. Gordon, “Component av-
eraging: An efficient iterative parallel algorithm for large
and sparse unstructured problems,” Parallel Computing,
vol. 27, no. 6, pp. 777 – 808, 2001.

[6] A. K. Katsaggelos, J. Biemond, R. W. Schafer, and R. M.
Mersereau, “A regularized iterative image restoration
algorithm,” IEEE Trans. Signal Processing, vol. 39, pp.
914–929, April 1991.

[7] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, Paral-
lel Iterative Algorithms: From Sequential to Grid Com-
puting. Chapman and Hall/CRC Press, 2007.

[8] A. Heddaya and K. Park, “Mapping parallel iterative
algorithms onto workstation networks,” in HPDC’94,
1994, pp. 211 –218.

[9] A. Legrand, H. Renard, Y. Robert, and F. Vivien,
“Mapping and load-balancing iterative computations on
heterogeneous clusters with shared links,” IEEE TPDS,
vol. 15, pp. 546–558, 2004.

[10] D. Nurmi, J. Brevik, and R. Wolski, “Modeling Machine
Availability in Enterprise and Wide-area Distributed
Computing Environments,” in Proc. of Europar, 2005.

[11] R. Wolski, D. Nurmi, and J. Brevik, “An Analysis of
Availability Distributions in Condor,” in Proc. of the
IPDPS Workshop on Next-Generation Software, 2007.

[12] B. Javadi, D. Kondo, J. Vincent, and D. Anderson,
“Mining for Statistical Models of Availability in Large-
Scale Distributed Systems: An Empirical Study of
SETI@home,” in Proc. of the 17th MASCOTS, 2009.

[13] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik,
P. Lemarinier, and F. Magniette, “MPICH-V2: a Fault
Tolerant MPI for Volatile Nodes based on Pessimistic
Sender Based Message Logging,” in 2003 ACM/IEEE
Supercomputing Conference. ACM Press, 2003.

[14] D. Kondo, A. Chien, and H. Casanova, “Resource Man-
agement for Rapid Application Turnaround on Enterprise
Desktop Grids,” in Proc. of SC, 2004.

[15] D. Zhou and V. Lo, “Wave Scheduler: Scheduling for
Faster Turnaround Time in Peer-based Desktop Grid
Systems,” in Proc. of the 11th JSSPP Workshop, 2005.

[16] T. Estrada, D. Flores, M. Taufer, P. Teller, A. Kerstens,
and D. Anderson, “The Effectiveness of Threshold-
Based Scheduling Policies in BOINC Projects,” in Proc.
of e-Science’06, 2006.

[17] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and
R. Wolski, “Fault-aware scheduling for Bag-of-Tasks
applications on Desktop Grids,” in Proc. of Grid Com-
puting, 2006, pp. 56–63.

[18] E. Byun, S. Choi, M. Baik, J. Gil, C. Park, and
C. Hwang, “MJSA: Markov job scheduler based on
availability in desktop grid computing environment,”
FGCS, vol. 23, no. 4, pp. 616–622, 2007.

[19] T. Estrada, O. Fuentes, and M. Taufer, “A distributed
evolutionary method to design scheduling policies for
volunteer computing,” SIGMETRICS Perf. Eval. Rev.,
vol. 36, no. 3, pp. 40–49, 2008.

[20] J. Wingstrom and H. Casanova, “Probabilistic Allocation
of Tasks on Desktop Grids,” in Proc. of PCGrid, 2008.

[21] E. Heien, D. Anderson, and K. Hagihara, “Comput-
ing Low Latency Batches with Unreliable Workers in
Volunteer Computing Environments,” Journal of Grid
Computing, vol. 7, no. 4, pp. 501–518, 2009.

[22] N. Fujimoto and K. Hagihara, “Near-Optimal Dynamic
Task Scheduling of Independent Coarse-Grained Tasks
onto a Computational Grid,” in Proc. of ICPP, 2003.

[23] C. Moretti, T. Faltemier, D. Thain, and P. Flynn, “Chal-
lenges in Executing Data Intensive Biometric Workloads
on a Desktop Grid,” in Proc. of PCGrid, 2007.

[24] T. Toyoma, Y. Yamada, and K. Konishi, “A Resource
Management System for Data-Intensive Applications in
Desktop Grid Environments,” in Proc. of PDCS, 2006.

[25] H. He, G. Fedak, B. Tang, and F. Cappello, “BLAST Ap-
plication with Data-Aware Desktop Grid Middleware,” in
Proc. of CCGrid, 2009, pp. 284–291.

[26] D. Kondo, G. Fedak, F. Cappello, A. Chien, and
H. Casanova, “Characterizing Resource Availability in
Enterprise Desktop Grids,” FGCS, vol. 23, no. 7, pp.
888–903, 2007.

[27] M. Dawande, P. Keskinocak, J. Swaminathan, and
S. Tayur, “On bipartite and multipartitie clique prob-
lems,” Journal of Algorithms, vol. 41, pp. 388–403,
2001.

APPENDIX

A. Proof of Theorem 4.1

Proof:

(i) NP-completeness of OFF-LINE-COUPLED (µ = 1)

The decision problem associated to OFF-LINE-

COUPLED (µ = 1) writes: given a value w and p
state vectors Sq , can we find m processors that are

simultaneously UP during at least w time-steps? This

problem clearly belongs to NP: the m × w sub-matrix

is a certificate of polynomial (and even linear) size.

For the completeness, we use a reduction from

ENCD, the Exact Node Cardinality Decision prob-

lem [27]. Let I1 be an instance of ENCD: given a

bipartite graph G = (V ∪ W,E) and two integers a
and b such that 1 ≤ a ≤ |V | and 1 ≤ b ≤ |W |, does

there exist a bi-clique with exactly a nodes in V and

b nodes in W ? Recall that a bi-clique C = U1 ∪ U2 is

a complete induced sub-graph: U1 ⊂ V , U2 ⊂ W , and

for every u1 ∈ U1, u2 ∈ U2, the edge (u1, u2) ∈ E.

We construct the following instance I2 of OFF-LINE-

COUPLED (µ = 1): we let p = |V | and N = |W |.
Resource Ri (which corresponds to vertex vi ∈ V) is

UP at time-step j (which corresponds to vertex wj ∈
W) if and only if (vi, wj) ∈ E. Finally we let m = a
and w = b. The size of the instance I2 is linear in the

size of the instance I1. We show that I1 has a solution if

and only if I2 does. Suppose first that I1 has a solution

C = U1∪U2. We select the corresponding U1 processors

and the same U2 time-steps. Because we have a clique,

each processor is UP at each time-step, hence I2 has

a solution. Suppose now that I2 has a solution. The

corresponding sub-matrix translates into a bi-clique with

a nodes in V and b nodes in W , hence a solution to I2.

(ii) NP-completeness of OFF-LINE-COUPLED (µ = ∞)

We use the same instance I1 of ENCD as in the first

part of this proof. We construct the following instance

I2 of OFF-LINE-COUPLED (µ = +∞): we let p = |V |
and N = 2|W | + 1. Resource Ri (which corresponds

to vertex vi ∈ V) is UP at time-step j ≤ N (which

corresponds to vertex wj ∈ W) if and only if (vi, wj) ∈
E. All processors are up at each step j such that |W |+
1 ≤ j ≤ N . Finally we let m = a and w = b+ |W |+1.

Intuitively, this amounts to add |W | + 1 new vertices

in W which are interconnected to every vertex in V .

The size of the instance I2 is linear in the size of the

instance I1. We show that I1 has a solution if and only

if I2 does. Suppose first that I1 has a solution C =
U1 ∪ U2. We select the corresponding U1 processors

and the same U2 time-steps, plus the last |W |+1 time-

steps. We have w = b+|W |+1, hence I2 has a solution.

Suppose now that I2 has a solution. The corresponding

sub-matrix translates into a bi-clique with x processors

and y time-steps. If x < m then at least one processor

executes two tasks per iteration, and we need 2w times-

steps to perform an iteration. But 2w > N , what is

a contradiction. Hence x = m and y = K. At most

|W | + 1 of the UP time-steps are greater than |W |,
hence at least b of them are smaller than or equal to

|W |: this leads to a solution to I2.

B. Proof of Theorem 5.1

Proof: Consider a set S of processors, all available

at time slot 0. Consider the probability P
(S)
+ (t) that all

these processors are simultaneously UP again for the

first time at time t. This means that for all 0 < t′ < t,
there exists at least one processor RECLAIMED at

time t′. Also, none of the processors in S goes DOWN

between 0 and t.
Let P

(q)

u
t
→u

be the probability that a processor Pq that

was UP at time 0 is UP again at time t, without

having been DOWN in between, and let P
(S)

u
t
→u

=
∏

Pq∈S P
(q)

u
t
→u

. For each processor Pq , the value P
(q)

u
t
→u

can be computed by considering its transition matrix

raised to the power t, knowing that the initial state is

UP . We form the product to compute P
(S)

u
t
→u

. We derive

that

P
(S)
+ (t) = P

(S)

u
t
→u

−
∑

0<t′<t

P
(S)
+ (t′)× P

(S)

u
t−t′

→ u
.

The probability P
(S)
+ that all the processors in S will

be simultaneously UP again at some point, before the

first failure of any of them, is

P
(S)
+ =

∑

t>0 P
(S)
+ (t)

=
∑

t>0 P
(S)

u
t
→u

−
∑

0<t′<t P
(S)
+ (t′)× P

(S)

u
t−t′

→ u

=
∑

t>0 P
(S)

u
t
→u

−
∑

t>0 P
(S)
+ (t)×

∑

t′>0 P
(S)

u
t′
→u

Let Eu(S) =
∑

t>0 P
(S)

u
t
→u

. Suppose that all proces-

sors are UP at time slot 0. Let At the random variable

that is equal to 1 if all processors are UP at time slot

t without that ant processor goes DOWN in between.

Then E(At) = P
(S)

u
t
→u

. By linearity of the expectation,

we have E(
∑

0≤t′≤t At′) =
∑

0≤t′≤t P
(S)

u
t′
→u

. Suppose

that, in set S, at least one processor has a nonzero prob-

ability of going DOWN . Then, limt→∞

∑

0≤t′≤t P
(S)

u
t′
→u

converges. We can conclude that E(
∑

t>0 At) =
∑

t>0 P
(S)

u
t
→u

. Then, Eu(S) is the expected number of

time slots with all processors UP , before one of these

processors fails. Then, P
(S)
+ = Eu(S)−Eu(S)×P

(S)
+ ,

from which we derive that P
(S)
+ = Eu(S)

1+Eu(S) if , in set

S, at least one processor has a nonzero probability of

going DOWN . Otherwise, P
(S)
+ = 1.

We now consider the expected time E(S)(W) to

execute W time slots of computation, conditioned by

the fact that no processor in S will fail. The first time

slot of computation is done at t = 0. Let E
(S)
c be

the expected time of the next time slot of computation.

Then,

E
(S)
c =

∑

t>0 t× P
(S)
+ (t)

=
∑

t>0 t× P
(S)

u
t
→u

− t×

(

∑

0<t′<t P
(S)
+ (t′)× P

(S)

u
t−t′

→ u

)

=
∑

t>0 t× P
(S)

u
t
→u

−
(

∑

t>0 P
(S)
+ (t)

)

×
(

∑

t′>0(t+ t′)P
(S)

u
t′
→u

)

Let A(S) =
∑

t>0 t × P
(S)

u
t
→u

. Then, E
(S)
c =

A(S) − E
(S)
c × Eu(S) − P

(S)
+ × A(S). Then, E

(S)
c =

A(S)
(

1−P
(S)
+

)

1+Eu(S) and E(S)(W) =
1+(W−1)E(S)

c

(P
(S)
+)W−1

.

We now explain how we numerically approximate

the values of Eu(S) and A(S). Let ε be the desired

precision. Consider for some value T the difference

between Eu(S) and
∑

0<t<T P
(S)

u
t
→u

. We have P
(S)

u
t
→u

=
∏

Pq∈S P q

u
t
→u

and P q

u
t
→u

the probability that a processor

that was UP at time 0 is UP at time t without

having been DOWN . For a processor Pq ∈ S, let

Mq =

[

P
(q)
u,uP

(q)
u,r

P
(q)
r,uP

(q)
r,r

]

. Then, P q

u
t
→u

= (M t
q)[0, 0]. We

obtain P q

u
t
→u

= µ(λq
1)

t + ν(λq
2)

t with µ, ν ≥ 0,

µ + ν = 1 and λq
1 > λq

2 eigenvalues of Mq . Then,

P q

u
t
→u

≤ (λq
1)

t. We obtain P
(S)

u
t
→u

≤
(

∏

Pq∈S λq
1

)t

and
∑

t≥T P
(S)

u
t
→u

≤
(

∏

Pq∈S λq
1

)T

× 1
1−

∏

Pq∈S
λ
q
1

. Let

Λ =
∏

Pq∈S λq
1. We obtain that T > ln(ε(1−Λ))

ln(Λ) implies

Eu(S) −
∑

0<t<T P
(S)

u
t
→u

≤ ε. Thus, we can compute

in polynomial time an approximation of Eu(S) at ε in

polynomial time.

Similarly, we obtain A(S)−
∑

0<t<T t×P
(S)

u
t
→u

≤ ε as

soon as ΛT
(

T
1−Λ + Λ

(1−Λ)2

)

≤ ε. Therefore A(S) can

be approximated with precision ε in polynomial time.

