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Abstract

This paper proposes a study of biological regulatory networks based on a
multi-level strategy. Given a network, the first structural level of this strat-
egy consists in analysing the architecture of the network interactions in order
to describe it. The second dynamical level consists in relating the patterns
found in the architecture to the possible dynamical behaviours of the net-
work. It is known that circuits are the patterns that play the most important
part in the dynamics of a network in the sense that they are responsible for
the diversity of its asymptotic behaviours. Here, we pursue further this idea
and argue that beyond the influence of underlying circuits, intersections of
circuits also impact significantly on the dynamics of a network and thus
need to be payed special attention to. For some genetic regulation net-
works involved in the control of the immune system (“immunetworks”), we
show that the small number of attractors can be explained by the presence,
in the underlying structures of these networks, of intersecting circuits that
“inter-lock”.

Keywords: Discrete dynamical systems, biological regulatory networks,
random networks, asymptotic behaviour, immune system networks.

1. Introduction

Since researches have focused on modeling genetic regulation networks
by Boolean automata networks, many authors have noticed that the num-
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ber of attractors observed experimentally (i.e., the number of their different
possible asymptotic behaviours such as fixed or cyclic configurations of ex-
pressed and/or silent genes) is in general very small compared to the number
of different network configurations: a Boolean network of size n has 2n dif-
ferent configurations but only around

√
n attractors [1, 2]. Although this

property is of mathematical order, it has real pertinence also from the bio-
logical point of view. Indeed, since Delbrück [3], it is common to compare
differentiated cellular types controlled by genetic regulation networks with
attractors of the model theoretical networks (see Appendix F). Further,
Thomas [4] developed the idea that specific structural patterns known as
circuits (i.e., cyclic chains of interactions) play a crucial role in the dynam-
ics of regulation networks in that they are responsible for the diversity in
the possible asymptotic behaviours of networks.

Now, in an arbitrary network, besides the elements that belong to cir-
cuits (seen as the“core”elements), all other elements belong to trees (see Ap-
pendix A for details) that are either down-trees (i.e., that have no influence
on the rest of the network), either up-trees (i.e., that undergo no influence
from the rest of the network and only eventually act punctually on it by
allowing or disallowing it to have its own dynamics), or trees connecting
disjoint sets of intersecting circuits, only serving as information pathways.
In line with dynamical systems theory, graph theory and Thomas’ ideas, we
propose here to exploit these distinctions and our theoretical knowledge of
the dynamics of circuits to carry out further the analysis of the relations
that exist between the structural and the dynamical properties of regulation
networks. We will develop and emphasise particularly the idea that the very
small number of observed attractors mentioned above can be related to the
existence of intersections of circuits in networks structures. Our analyses
will be based on the hypothesis that from our knowledge of (i) the existence
and location of underlying crucial patterns such as circuits in the archi-
tecture of a regulation network and of (ii) how, in theory, these patterns
behave dynamically and (iii) how they interact, we may draw a global un-
derstanding of the dynamics of the network. Under this assumption, results
from [5, 6] that enable us to predict the number of isolated and intersecting
circuits, as well as the number of up- and down-trees in random networks
and results from [7, 8] concerning the dynamics of (intersecting) circuits can
be used to produce an estimation of the number of attractors of random
networks.

With the aim of giving answers in both mathematical and biological con-
texts, we will focus in this paper on biological regulation networks involved
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in the control of the immune system. We call these networks “immunet-
works”. We will develop the idea that as well as specific structural patterns
(e.g., regulatory circuits, up-trees. . . ), interactions between these patterns
(e.g., interactions between circuits due to an intersection gene, influences of
boundary elements, such as micro-RNAs, on more central elements. . . ) also
impact considerably on the dynamics of these networks. Further, we will
relate this idea to matters such as the evolution of immunetworks towards
unequivocal functions, ageing, and also how to help build our knowledge of
underlying gene-to-gene interactions based on a comparison between theo-
retical and experimental results.

We will start, in Section 2, by presenting the theoretical objects that
we use to model biological regulation networks, that is, Boolean automata
networks and their update schedules. Then, in next section, Section 3, we
will introduce the theoretical notions of isolated and intersecting circuits
and we will recall some of their dynamical properties. In Section 4, we will
focus on the dynamics of concrete examples of immunetworks and finally, in
Section 5 we will list perspectives of this work and propose a series of open
problems and conjectures that we believe to be relevant.

2. Theoretical preliminaries

Informally, a Boolean automata network is described by two sets. The
first set is the set of automata that represent the genes involved in the reg-
ulation network that is being modeled. In a Boolean automata network,
automata take only two possible states: 0 or 1, i.e., inactive or active. Let
us note that in general automata networks, the automata may take several
different integer states (ranging from state 0 representing the inactivity of
the corresponding gene g to an integer state qg ∈ N representing the highest
concentration of the protein produced by gene g) [9, 10, 11]. The second set
needed to describe an automata network is that of the interactions between
the automata. These interactions, that are pictured by arrows (or arcs) be-
tween automata, represent positive and negative influences that genes have
on one another via their proteins (see Appendix B for details on biological
regulation networks modeling).

Now, formally, a Boolean automata network N is defined by a digraph
(see Appendix A for details on graph theory) G = (V,A) and a set F of
|V | = n Boolean functions fi : {0, 1}n → {0, 1} (one for each automata
i ∈ V ) that are called local transition functions. The digraph G is called
the interaction graph of the network N . Figure 1 pictures the two instances
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of interaction graphs that we will pay special attention to in this article:
(isolated) circuits and intersecting circuits. Nodes or vertices of G, i.e.,
elements of the set V , are assimilated to the automata of N (and thus also
to the genes of the real genetic network being modeled). The set A of arcs
of G represents the effective interactions between automata: for every local
transition function fi : {0, 1}n → {0, 1} (i ∈ V ), the arc (j, i) belongs to
A if and only if fi depends on its jth component. It is common practise
to label by a + sign and call positive arc any arc that conveys a positive
dependency and label by a− sign and call negative arc any arc that conveys a
negative dependency (see examples in Figure 2). Thus, we say that a circuit
is positive if it contains an even number of positive arcs and we say that it
is negative if it contains an odd number of negative arcs. Note that in some
figures (Figure 4, left for instance) originated from a biological background,
positive arcs are represented by simple unlabeled arrows and negative arcs
by flat-headed unlabeled arrows.

Figure 1: Two network interaction graphs: a circuit (left) and two tangentially intersecting
circuits (right).

Since every one of the n automata can take one of the two states 0 and 1,
the network N has 2n different configurations (or states) which are identified
with Boolean vectors x ∈ {0, 1}n whose ith component xi represents the
state of automata i. In order to define the dynamics of a Boolean network
N , we set the temporal space to be N and write x(t) ∈ {0, 1}n to refer
to the configuration of the network N at time step t. Then, the set F of
local transition functions together with an update schedule (a.k.a. iteration
mode) specifies the transitions that the network N may perform between
configurations. More precisely, each Boolean function fi : {0, 1}n → {0, 1}
in the set F maps a configuration of the network to a state of the automaton
i. Thus, if x(t) ∈ {0, 1}n is the configuration of the network N at time t and
if W ⊆ V is the set of automata whose states are to be updated between
time steps t and t + 1, then the new configuration of the network at time
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t+ 1 is x(t+ 1) = FW (x(t)) where:

xi(t+ 1) =

{

fi(x(t)) if i ∈ W,

xi(t) otherwise.

Note that, more generally, one can define update schedules such that, be-
tween two observations of the network configuration, at time t and then at
time t + 1, several sets W of automata are updated sequentially. This is
the case of the block-sequential update schedules that were introduced by
Robert [9]. Indeed, any given block-sequential update schedule defines a
partition of V comprised of disjoint sets Wk ⊆ V, k ≤ m ≤ V of automata
such that between time steps t and t+ 1, all automata in one same set Wk

are updated in parallel whereas the sets themselves are updated sequentially.
In other words, at the end of each update sequence (W1,W2, . . . ,Wm) start-
ing at time t where x(t) is the network configuration, all automata of the
network have been updated exactly once and the network has taken state
x(t+ 1) = FWm ◦ . . . ◦ FW2

◦ FW1
(x(t)). Particular cases of block-sequential

update schedules are the parallel update schedule (that updates all automata
at once) and the n! different sequential update schedules (that update au-
tomata one at a time according to a predefined sequence). In this paper,
we focus on the parallel update schedule and thus the dynamics of networks
will be given by:

∀x = x(t) ∈ {0, 1}n, x(t+ 1) = FV (x) = (f1(x), f2(x), . . . , fn(x)).

The dynamics of a Boolean automata network can be represented by a
digraph in which nodes correspond to configurations x(t) and arcs corre-
sponds to transitions (x(t), x(t+ 1)) between configurations (see Figure 2).
This digraph is called the transition graph of the network. Attractors of a
Boolean automata network are the circuits in its transition graph. The pe-
riod of an attractor is the number of configurations it contains. Attractors
of period 1 are usually assimilated to the sole configuration they contain and
called fixed points. Attractors of larger periods are called limit cycles. The
set of configurations leading towards a given attractor is called the attraction
basin of this attractor [12, 13]. The notion of attraction basin will be of im-
portance here because, as in [14], attraction basins will serve later as gauges
of the robustness and plausibility of some attractors that will be considered.
More precisely, we will abide by the idea that the greater the size of the
attraction basin of an attractor A is, the most likely is this attractor.

As mentioned above, here, we choose to study networks under the par-
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f1(x) = ¬x4

f2(x) = x1 ⊕ x2 ⊕ x4

f3(x) = x1 ∧ (x2 ∨ x3)
f4(x) = x1 ∨ x3

f1(x) = x2 ∧ x3 ∧ ¬x4

f2(x) = ¬x1 ∨ x3

f3(x) = x1 ∨ x4

f4(x) = ¬x1 ∧ x2 ∧ x3

f1(x) = x4

f2(x) = x1

f3(x) = x2

f4(x) = x3

f1(x) = ¬x4

f2(x) = x1

f3(x) = x2

f4(x) = x3

Figure 2: Four different Boolean automata networks (A, B, C, D) of size 4. In each box
figures, from top to bottom, the interaction graph of the corresponding network, the set
of local transition functions ∀1 ≤ i ≤ 4, fi : {0, 1}

4 → {0, 1} and a representation of the
transition graph of the network. Some arcs of the interaction graph of network A are not
signed. These arcs convey dependencies that are given by the local transition function f2
of automata 2 which is defined by the xor function. Network A has a limit cycle of period
10 whose attraction basin is composed of 6 configurations. Network B has three fixed
points amongst which only one has a non empty attraction basin of size 13. Networks C
and D both have circuits as interaction graphs and in agreement with results in [7, 15],
they both only have attractors without attraction basins.
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allel update schedule. The reason is twofold. First, from [9], we know
that the dynamics of an arbitrary network N updated with an arbitrary
block-sequential update schedule is equivalent to that of a network N ′ up-
dated with the parallel update schedule. Thus, as far as block-sequential
update schedules are concerned, from a methodological point of view, it
suffices to study and understand dynamics under the parallel update sched-
ule only. In addition, one of our main aims is to determine upper bounds
on the number of attractors of some specific networks. Studies performed
in [16, 17, 18] showed that, for most networks, the maximum number of
attractors is obtained with the parallel update schedule. Indeed, in [19], the
analysis concerning the dynamics of circuits exploiting results of [9] shows
that sequentialising the updating of a network tends to make it equivalent to
a network whose circuits are smaller and thus whose attractors are smaller
and less numerous (see [7, 8, 15] for a combinatorial study of the dynamical
behaviours of circuits).

3. Circuits and intersecting circuits

Another significant choice that we make in this article is to focus on how
circuits and intersecting circuits impact on the dynamics of networks that
contain them. Now, underlying circuits in networks are known since the
1980’s to be responsible for the diversity in their dynamical behaviours. In-
deed, in [4], Thomas formulated two conjectures concerning the importance
of circuits and their relation to the dynamics of networks:

• the presence of an underlying positive circuit is a necessary condition
for multistationarity (the existence of several fixed points);

• the presence of an underlying negative circuit is a necessary condition
for stable oscillations (the existence of limit cycles).

Since then, these conjectures have been proven in different frameworks [20,
21, 22, 23, 24, 25, 26, 27, 28, 29]. As for intersecting circuits, we will argue
here that beyond the impact that circuits have on the dynamical behaviour
of a network, the interactions of circuits via their intersections also account
significantly for certain dynamical properties of networks.

To do so, we will rely on the theoretical results presented in [7, 8], dis-
cussed in Appendix F, and presented in Tables 1 and 2. These results give
the number of attractors of isolated circuits and of pairs of tangentially in-
tersecting circuits in parallel. They induce possible comparisons between the
asymptotic dynamics of these networks. These comparisons are summarised
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in the list below. To illustrate them, let us consider the following example.
Let Cℓ be a negative circuit of size ℓ = 8, let Cr be a positive circuit of size
10 and let N be the network consisting of the tangential intersection of the
two circuits (as in Figure 1). Then, according to Table 1 (column 10, row
gcd(8, 10) = 2), N has 14 attractors. Note that similar examples with two
negative circuits may easily be drawn from Table 2. Figure 3 represents one
of them.

2

attractors

2

attractors

1 attractor 4 attractors 20 attractors

O O2O1

Figure 3: Left: A network that has one unique attractor and which is comprised of two
negative circuits of respective sizes 4 and 3 intersecting on node O. Centre: Isolated, each
of these circuit has 2 attractors. Thus if they are contained both in a larger network,
their reunion yields 2 × 2 = 4 attractors. Right: Ignoring the intersection in the first
network (left) and focusing on the circuit that encircles both smaller circuits is equivalent
to replacing node O by a bipolar node {O1,O2} or to supposing that node O does not
transmit fairly and synchronously the information it receives to both circuits. This yields
a network with 20 attractors.

• The tangential intersection N of two circuits Cℓ and Cr of respective
sizes ℓ and r and respective signs sℓ and sr, induces less attractors
than what a circuit of size ℓ+r and of sign sℓ×sr has. In other words,
the network consisting in the longest circuit encircling Cℓ and Cr in N

has more attractors than N . For the example introduced above, the
“encircling circuit” has size 8 + 10 = 18, is negative and according to
Table 2 (last row of column T−

ℓ ), has 7286 ≫ 14 attractors.

• An intersection of circuits has less attractors than the multiplication
of the number of attractors induced by each of the circuits separately.
In our current example, the negative circuit of size 8, when isolated,
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has 16 attractors (see last column of Table 1 or 2), the positive cir-
cuit of size 10 has 108 attractors (see last row of Table 1) and the
multiplication of these numbers equals 1728 ≫ 14.

• The number of attractors induced by an intersection of circuits can be
compared to the number of attractors of one of these circuits. More
precisely, if both circuits are negative, then their intersection yields less
attractors than the number of attractors that has the largest negative
circuit when it is isolated; if one of the circuits is positive, then, the
intersection has less attractors than the number of attractors of this
positive circuit.

Results in [8] suggest that the three upper bounds given above are ordered
from the loosest to the tightest (this is verified by the example we chose).
Let us emphasise that our interest in the first bound is that it integrates
the possibility of a natural perturbation that would desynchronise the be-
haviour of the intersection node, associating both of its inputs to the output
belonging to the other circuit, as it is is pictured in the right part of Figure 3.

In similar lines, let us highlight here that it is easy to derive from results
in [7, 15] that positive circuits have at least twice as many attractors as
negative circuits of the same size. A result of this is that fixing the state of
an underlying positive circuit of size n in a network (either by intersecting
it with another circuit or by submitting it to a fixed input resulting from
a source node such as a micro-RNA as we will see later on, for instance)
potentially has much more drastic consequences than fixing the state of an
underlying negative circuit of size n, in terms of the reduction in the number
of possible attractors of the network.

Now, let us consider again two tangentially intersecting circuits Cℓ and
Cr and let us note that imposing that one node of the network keep a fixed
state may have different results according to where this node is located. If
the fixed node belongs to just one of the circuits, say Cℓ, then necessarily,
the state of this circuit will also become fixed. Whether or not the state of
circuit Cr will also become fixed depends on the strength of the action that
Cℓ has on Cr via the intersection. If the fixed node is the intersection node
then, necessarily, both circuits loose their ability to behave dynamically as
they would without the additional constraint on the intersection node: they
both end up in a fixed state. Thus, extrapolating to intersecting circuits
embedded in larger networks, we can suppose that some nodes in a network
are theoretically much more sensitive than others in that acting on them
can impact indirectly on larger parts of the network.
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Table 1: Number of attractors of a negative circuit of size ℓ intersecting a positive circuit
of size r. When the size ℓ of the negative circuit is larger than the size r of the positive
circuit, the number of attractors equals the number given in cell (gcd(ℓ, r), r) according
to [8]. The row T

+
r (resp. the column T

−

ℓ ) gives the total number of attractors of an
isolated positive (resp. negative) circuit of size r (resp. ℓ).

In the sequel, applying all the theoretical results presented in this section
to concrete examples and computing some of the bounds listed above for
these examples, we will argue in particular that intersections of circuits are
responsible for substantial decreases in the number of attractors induced by
a couple of circuits.

4. Immunetworks

In the sequel, we call immunetworks biological regulatory networks in-
volved in the control of the immune response. They are now extensively stud-
ied and numerous genes and regulations composing their interaction graphs
have been identified. Let us take as example the network that controls in
mice the rearrangement process of the TCRA and TCRB loci. In [30], fig-
ures the interaction graph of this complex immunetwork. It is comprised of
around a hundred genes (among which about 30 are sinks and 8 are sources)
and less than three hundred interactions and thus has a connectivity of
about 3 (see Appendix A). A part of this network is pictured in Figure 4.
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Table 2: Number of attractors of two negative intersecting circuits of sizes ℓ and r. The
last column gives the total number T−ℓ of attractors of an isolated negative circuit.

In the sequel, we call this sub-network the PU.1 sub-network. It contains
two negative circuits that intersect on gene PU.1: one negative circuit of
size 6 that we call the GibFi circuit and another of size 2 called the Runx3
circuit. According to Table 2, the PU.1 sub-network has a unique attractor.
Now, since the GibFi circuit when isolated has 6 attractors and the Runx3
circuit has one, based on Table 2, we find that the PU.1 sub-network has less
attractors than what it would have in all three of the following cases which
yield respectively 36, 6 and 6 attractors (and which correspond respectively
to the three upper bounds presented in Section 3 and illustrated by Fig-
ure 3): (i) the intersection gene PU.1 is bipolar as suggested in Figure 3
(right), (ii) the two circuits are separated, (iii) only one of the two circuits,
the largest, is kept. Moreover, notice the importance of this intersecting
circuit that takes part in regulating the expression of the RAG-1 gene which
allows to perform both the TCRB and the TCRA rearrangements at the
origin of T cell lineage [31, 32, 33].

4.1. Micro-RNAs implications in immunetworks

Any regulation network may undergo several types of actions whose effect
may be to enhance the network stability or to select a particular network
behaviour. Amongst these actions, are those that are due to micro-RNAs,
ubiquitously present in all species. Let us note that there are three different
ways in which micro-RNAs can act on a regulation network: they may either
act on the down-tree or sink nodes of the network, either act on the up-tree
or source nodes of the network, or they can act directly on the core of
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Bcl11A

PU.1 Runx3

Gfi1B

Gfi1

inputs
Negative

Figure 4: Tangentially intersecting circuits found in one of the regulation networks con-
trolling the immune system of mice. On the left, a coloured snapshot extracted from the
biological regulation network given in [30]; on the right, a mathematical representation of
these two intersecting circuits. Dashed lines represent chains of interactions.

the network (see Appendix A). As mentioned above, these actions may all
have significant impact on the dynamical behaviour of the network. Indeed,
the first type of action may modify directly the output of the regulation
network. The other two may have an even more significant impact since
they may force underlying core circuits to remain fixed in a certain state
and thus, they may have as consequence to reduce considerably the number
of attractors of the network. Again, let us point out that fixing in a similar
manner the state of nodes in a positive circuit particularly, also potentially
has very significant impact on the number attractors of the network.

As an example, consider the immunetwork of Figure 4 (see [30] for a
detailed version of the interaction graph of this network). Instances of all
three actions may be recognised. Indeed, first, according to [34, 35], there
are five micro-RNAs that target the sink gene Bcl11A. Second, nine different
micro-RNAs act directly on gene Gfi1, and thus directly on the GibFi circuit.
Finally, considering gene Notch2 when bound to CSL, and the oriented chain
of interactions that exists from the Notch2/CSL complex to gene PU.1, we
find that sixteen different micro-RNAs have an indirect action on the PU.1
sub-network through an up-tree.

4.2. Evolution of immunetworks

In [36], the authors present circuits from an immunetwork controlling the
B cells differentiation (Figure 5). Interestingly, all confirmed interactions
(in full lines in the figure appearing in [36]) are shared by the immunetwork
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involved in the TCRA rearrangements (in blue in Figure 5). This highlights
how evolving organisms have a great ability to re-use successful regulation
solutions.

C/EBPa

EBF

E2A

GATA-1

PU.1

Ikaros

Flk2 IL-7R

Notch-1

Pax-5

Figure 5: Genetic control common between the TCRA rearrangements (blue) and the B
cells differentiation (black) [36].

More generally, if we consider biological regulatory networks in an evolu-
tionary perspective, we can introduce a new mathematical tool to measure
the increase in their structural complexity. Indeed, on one hand, we can
consider that the adaptive ability of a regulatory network increases with
its number of attractors and on the other hand, we can consider conversely
that evolution towards a unique function devoted to tissues is that inducing
the minimum ambiguity in the genetic expression. In other words, we can
suppose that regulatory networks are networks that are designed so that
they have maximum stability asymptotically, that is, so that they have very
little attractors and when they have more than one, one of them (see for in-
stance fixed point 2 in Figure 6 that pictures the genetic regulation network
controlling the hair morphogenesis in mice) prevails through the size of its
attraction basin.

As discussed above, the number of attractors of a network is tightly
related to the circuits in its interaction graph. Thus, for random networks
of given connectivity, the expected number of attractors may be derived
from (i) the probability of there being a circuit of a given size ℓ in their
interaction graph and (ii) the exact formulae (given in [7, 15]) for the number
of attractors of positive and negative isolated circuits of size ℓ.

According to [37], different entropy measures may be used to describe
the complexity of a random network:

• The node entropy, Enode = −
∑

1≤k≤c·n Pk · log(Pk), where Pk is the
probability for any node to have in-degree k (with the convention 0 ·
log(0) = 0). In the case where c × n arcs are chosen uniformly at
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random amongst all the possible ordered pairs of nodes, every arc
has probability c

n
of existing and thus, every node has the following

probability of having k incoming arcs:

Pk = Ck
n · ( c

n
)k · (n− c

n
)n−k.

In this case, the node entropy is that of a binomial distribution of
parameters n and c

n
.

• The attractor entropy, Eattractor = −
∑

1≤s≤2n Ps · log(Ps), where Ps

is the probability for attractors to have attraction basins of relative
size s. For instance, using the attraction basins relative sizes given in
Figure 6 bottom panel, one can compute the attractor entropy of the
network pictured in Figure 6 top panel:

Eattractor = −[0.9966×log(0.9966)+0.0034×log(0.0034)] = 9.87×10−3.

A systematic calculation of Enode and of Eattractor yields an estimation of
the complexification of networks that ensure one same regulation function in
different species. As an example, one may consider the network regulating
the cell cycle: increasing the number of sources acting on the core of this
network through its up-trees (while keeping the network core unchanged)
induces an increase of node entropy [38]. Let us also note that the attrac-
tor entropy of the network of Figure 6 increases considerably between the
parallel update schedule (under which Eattractor = 9.87× 10−3) and the se-
quential update schedule that is used for the computations (under which
Eattractor = 6.97× 10−2).

4.3. Inverse mathematical methods for immunetworks

Identifying the expression states of genes involved in immunetworks us-
ing bio-arrays data or bio-functional considerations can be of great use, we
believe, in the process of inferring the underlying interactions structure of
networks. Indeed, from the knowledge of the set of genes that are expressed
asymptotically, inverse mathematical methods can draw a plausible set of
interactions that need to exist in order to effectively yield such asymptotic
states. Thus, we believe that approaches based on constraint programming
and on causal model view as in [39, 40, 41, 42] may reveal themselves useful
to understand the properties and perhaps even describe the underlying net-
work architectures that are compatible with gene states that are observed in
immunetworks (and believed to belong to attractors). Of course, extracting
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Fixed point 3 0000010000001100 1.56% 0000010000001100 ≈ 0.00%
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Figure 6: Genetic regulation network controlling the hair morphogenesis in mice [38], its
attractors and their attraction basins relative sizes (ABRS) according to the parallel and
a sequential update schedule. Dashed lines represent chains of interactions.

this information requires a precise knowledge of when does the immunetwork
enter its asymptotic regime, that is, its stationary or its cyclic attractors.

For example, from the data presented by [43, 44] and reproduced par-
tially in Table 3 and Figure 7, the authors of these articles showed how
to infer the expression state of important immune-related genes such as
PU.1, Notch1, Notch3, GATA3, Ikaros, Runx1, Runx3, RAG1, Bcl1, Lck,
ZAP70 or LAT. These genes appear as nodes of the network presented
in [30] and partly represented in Figure 4. Some interactions between them
are not strongly confirmed. Using inverse methods based on the knowl-
edge of what states are taken asymptotically by the genes, it can how-
ever be checked whether these hypothetical interactions are plausible or
not [39, 40, 41, 42, 45]. In addition, the likeliness of the interaction graph
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constructed this way, can be checked by performing the theoretical calcula-
tions mentioned in Section 3 and confronting the results to what is observed.
More precisely, finding theoretically unexpected numbers of attractors for
some of the networks produced by the inverse techniques may help to slim
down the set of possible network architectures by excluding those that yield
unlikely asymptotic dynamics. Thus, using our knowledge of the dynam-
ics of some key formal networks (most importantly circuits and intersecting
circuits) may reveal itself very useful in the process of refining our under-
standing of the underlying gene-to-gene interactions that take place in a
larger regulation network that we have only partial knowledge of otherwise.

For instance, from Table 2 (cell (6, 4)), we draw that the intersection at
the core of the sub-network pictured in Figure 7 yields 3 attractors. If the
network had been proposed with only slight variations (such as differences
in the signs of some interactions or in their number), Tables 1 and 2 show
that the number of attractors could have been very different, perhaps too
large for the architecture to be plausible. In particular, if one circuit had
been missing, the network would have had twice more attractors. If the two
circuits had not been supposed to interact through the intersection gene
Fyn, it would have had 4 times more attractors. To go further, considering
the bipolar ability of gene Fyn, the number of attractors would be 108, i.e.,
36 times more, making it probably too ambiguous and unstable to be likely
(supposing we abide by the hypotheses made in Section 4.2).
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Abl

Lckp1

ZAP70
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+

+
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Figure 7: Part of the immunetwork of T cell activation extracted from [43].
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Name Accession Description Ratio

Brain Heart Kidney

Irak3 NM 028679 Interleukin-1 receptor-associated kinase 3 1.23 0.78 0.87

Icam1 NM 010493 Intercellular adhesion molecule 0.68 0.98 0.61

Tcrb-V8.2 NC 000072 T-cell receptor beta, variable 8.2 −0.66 0.99 1.41

Table 3: Over-expression of immune-related genes due to ageing extracted from [44].

4.4. Immunetworks and ageing

The functional“canalisation”of immunetworks can be seen as their prop-
erty to select a unique attractor in the sense that their design either induces
no more than one attractor, or they induce several but only one that is much
more likely and stable than the others (see Section 4.2). The ageing process
can eliminate this property, for instance, by favouring isolated circuits over
intersecting ones or simply by desynchronising some of the genes that are lo-
cated at the intersection of several circuits in the network interaction graph.
As we have demonstrated in Section 3 and in the examples cited above, such
actions can provoke a significant increase in the number of attractors. As
an example, ageing induces an over-expression of gene Irak3 in the brain
(see Table 3): an over-activation of the positive circuit of size 9 to which
this gene belongs [30] could lead to a substantial increase in the number of
possible attractors (up to 60 according to Table 1).

In [46], another effect of ageing on the immune system is discussed .
The assumption is made that the anti-ageing effect of the dietary restriction
implies that there must exist signalling pathways that link nutrient sensing
with an appropriate effector mechanism to enhance somatic maintenance.
A candidate pathway is the Insulin/IGF-1 signalling pathway.

In the list of overlapping age-related genes, at least five genes of the genes
that appear are involved in the inflammatory response: Casp1, Irak3 (in-
volved in the regulation of the T helper cells maturation, cf. Figure 8), Cd48,
Dock2 and Icam1. Also directly related to IL-1 is Irak3 which regulates in-
nate immunity through unknown mechanisms [49]. Cd48 is an interleukin
(IL)-3-induced activating receptor on eosinophils which may be involved in
promoting allergic inflammation [50]. Dock2 has been shown to be of key
importance for lymphocyte chemotaxis [51]. Most interestingly, Icam1 (see
Table 3) is one of the proteins involved in inflammatory responses and is
over-expressed in senescent cells and aged tissues. Additionally, the NF-κB
signalling cascade is crucial for the activation of human Icam1 expression in
response to inflammation [52]. More generally, it would be of great interest
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Figure 8: Immunetwork upstream the gene GATA3 regulating T helper cell maturation [47,
48]. Dashed lines represent chains of interactions.

(and thus will constitute one of the main perspectives of the present work)
to elucidate the role of the immune system on ageing process acceleration
either through the general inflammatory response or through more specific
auto-immune pathologies, with under- or over-expressed genes involved in
the immune system regulation.

As a last example, consider the regulation of the T helper cell matu-
ration and the corresponding network pictured in Figure 8. This network
exhibits one (purple) negative circuit of length 3 intersecting tangentially a
(red) positive circuit of length 5. According to Table 1, due to the circuits
intersection, this immunetwork has only 3 attractors, instead, for instance,
of the 8 it would have, if the smallest circuit was removed. This last example
is another argument in favour of the fact that the reduction of the number
of attractors, i.e., the evolution towards ”pauci -functional” networks (con-
trolling only few dedicated functions), could be one of the characteristics of
the immune system.

4.5. Chromatin dynamics and a new update paradigm

The ultimate regulation target of an immunetwork such as those con-
trolling antigenic loci rearrangements is the chromatin. In eukaryotes, linear
DNA is associated with a protein complex of histones to constitute a com-
pacted nucleoprotein complex, the nucleosome. The core of a nucleosome
consists in 146 DNA base pairs wrapped around a histone octomer (each
histone octomer contains two copies of four histones, H2A, H2B, H3, and
H4). A linker DNA, roughly containing 50 base pairs, separates the nucleo-
some core particles. A supplementary H1 histone associates with the DNA
of the nucleosomes and stabilises the fibre. This structure corresponds to
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the 10-nm fibre, which further coils itself to form the 30-nm fibre. Moreover,
eukaryotic inter-phase chromatin includes heterochromatin domains highly
condensed and mostly transcriptionally inactive, as well as less compacted
euchromatin domains containing actively expressed genes. The heterochro-
matin corresponds to certain euchromatic areas and might be transcription-
ally inactive or active depending on the cell lineage or developmental stage.

Chromatin remodeling and sub-nuclear relocalisations of the loci coding
for the TCR and Ig chains constitute prerequisites for the V(D)J rearrange-
ments of the TCRA locus. The chromatin can be considered as a mediated
epigenetic system [53, 54, 55, 56] whose structural modifications require
distinctive time delays independent of gene-to-gene interactions within im-
munetworks.

Although many further experimental studies need to be performed in
order to understand the complex role played by the chromatin state on the
regulation of the immune system, we believe that some theoretical studies
may help. Thus, let us propose frameworks in which these studies could be
carried out.

Let us call chrodyn genes the genes involved in the chromatin dynamics.
To account for chromatin dynamics influences, we propose to integrate chro-
dyn genes into our models and represent them by nodes in the interaction
graphs just like any other network genes. However, obviously, these chrodyn
genes need to be given somehow a status that distinguishes them from other
genes. Indeed, we want to model the fact that when the chrodyn genes be-
come unexpressed (consecutive to a micro-RNA inhibition, for instance), all
genes depending on their being active become inactive as well and remain
so until the chrodyn genes return to an active state. Thus, our model needs
to give a certain primacy to interactions with chrodyn genes.

There are two ways to do this. The first way consists in representing
this primacy either by heavily weighted arcs in a threshold network (see Ap-
pendix D) or more generally, by conveying it through the local transition
functions of genes that depend on the state of chrodyn genes (this can be
done by choosing a function that depends much more severely on its chro-
dyn genes components than on its other components). A second way to
account for the primacy of the chrodyn genes influences is to introduce a
new multi-scale update paradigm. Let us develop this idea herein general
terms.

First, consider a network N and k different subsets N1, N2, . . . , Nk of
that network. Note that the Ni’s are not necessarily disjoint. We define a
digraph U with k nodes, one for each Ni, and which contains the arc from
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node i representing Ni to node j representing Nj if and only if the dynamics
of Nj need to be activated by the nodes of Ni (or perhaps just the sink nodes
of Ni, if they exist). In other words, the arc (i, j) belongs to U if and only
if any dynamical behaviour of Nj can only happen once the nodes of Ni are
active. To be even more general and take into account more complex cases
in which the dynamics of Nj depend on more than one condition (and also,
possibly, to allow negative conditions such as the dynamics of Nj depend on
the nodes of Ni being inactive), to every Ni, we associate a function hi. Not
unlike the local transition functions fi of nodes of a network, these functions
are designed so that they take the value 1 if the conditions for dynamics of
Ni to take place are satisfied. Voluntarily, we leave open the question of how
the hi’s must be defined formally (besides the fact that they must convey
the dependencies recorded in the arcs of U).

Thus, to update the nodes inN we define a two-level update schedule. At
the level of nodes inside a sub-network Ni, an update schedule (in the sense
of those that have been mentioned in Section 2) is given. All sub-networks
need not be given the same update schedule (for the sake of simplicity, we
may however again choose the parallel update schedule for all of them).
This way, letting the dynamics of Ni take place consists simply in updating
the nodes of Ni according to its update schedule (as if it were an isolated
network just like all those that have been considered until this section).
Then, with respect to the constraints recorded in the arcs of U , a second
update schedule, at the higher level of the sub-networks themselves, specifies
when each sub-network is to be updated, that is, when its dynamics become
free to take place. Following the suggestion made above, a natural way to
do this is to allow the dynamics of any sub-network Ni to take place as long
as its hi value equals 1 and freeze (and perhaps re-initialise it in a way that
needs to be defined) as soon as hi takes the value 0.

Besides its obvious need for some additional formal precisions, the two-
scale update schedule we have just introduced adds a level of abstraction in
which the statuses or roles of different sub-networks may be defined using the
new digraph U . This can be exploited to highlight the precedence that some
sub-networks, such as those that represent the set of chrodyn genes, have on
other sub-networks. In addition, the higher level part of the update schedule
with the definition (to be given) of the hi functions may allow the possibility
to take into account different time scales under which sub-networks evolve.
They may in particular produce a way to model time delay factors such as
the decay of gene products. This way, it is possible to impose that a sub-
network Nj become active only after certain genes have been active for a
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long enough period of time and conversely, that Nj become inactive if the
genes it relies on have been inactive for a certain amount of time.

5. Perspectives

We end this paper with some suggestions of future theoretical studies
that are needed by the present state of knowledge on asymptotic dynamical
behaviours of immunetworks. We express these perspectives in the form of
four conjectures that have been verified in many examples but that remain
to be rigorously proven and one open problem.

Conjecture 1. We conjecture that the impact of circuits intersections as
described in [7] and [8] (in which the circuits considered are supposed to
intersect tangentially as well as to be isolated from any environment), can
be generalised to arbitrary types of circuits intersections embedded in larger
interaction graphs. More precisely, the intersection of two circuits induces
three possible behaviours:

• either both circuits are locked (possibly interlocked) and the states of
their nodes remain fixed;

• either one of them is locked and the states of its nodes remain fixed
while the other is free to behave as it would if it were alone;

• or both circuits manage to cycle together.

We conjecture that in all three cases, the number of attractors induced by
this intersection is smaller than the number of attractors we would obtain
if only one circuit was kept (possibly the circuit encircling the intersecting
circuits, in the third case). We also conjecture that attractor periods tend
to diminish, when circuits are made to intersect.

As an illustration of Conjecture 1, consider the network pictured in Fig-
ure 9 (with the model of threshold Boolean automata networks, see Ap-
pendix D). It has only two attractors (one of period 7 and one fixed point).
The largest circuit encircling the two intersecting circuits of sizes 5 and 7
has size 8 and is positive. According to the last row of Table 1, if it were
isolated, this circuit would have 36 attractors (all of which have a period
that is smaller than 8). Another illustration of Conjecture 1 is the network
controlling the hair morphogenesis in mice mentioned above (see Figure 6).
In this network, when the two intersecting circuits ((cMyc, Id3) and (cMyc,
cyclin D1)) are free from constraints imposed by the rest of the network
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Figure 9: A network, modeled by a threshold Boolean automata network, composed of
a negative circuit of size 7 intersecting a positive circuit of size 5 with two common
nodes. Positive (resp. negative) arcs have weights equal to +2 (resp. −2). Nodes whose
sole incoming arc is a positive arc have a threshold equal to +1; all other nodes have a
threshold equal to −1.

(i.e., when the network is not in the attraction basin of the first fixed point
in which all nodes are inactive), then the network has three attractors which
correspond to the three attractors (two fixed points and one limit cycle of
period 2) of an isolated positive circuit of size 2 (see Table 1, last row).

Conjecture 2. The number of attractors of any Boolean automata network
is bounded by the number of attractors of the same network in which all
strongly connected components have been replaced by a single circuit. This
conjecture follows directly from Conjecture 1.

Conjecture 3. If N is a network whose underlying interaction graph G is
strongly connected, then, N has a unique attractor which is a fixed point
if and only if G contains a negative circuit whose size divides the size of a
positive circuit in G. By the results reported in Table 1, if G is reduced to
just two tangentially intersecting circuits, then this conjecture is satisfied.

Conjecture 4. According to [57] and [58], isolated circuits have a conserved
energy function and thus can be called Hamiltonian systems. We conjecture
that this property remains true for intersecting circuits.

Open problem. Finally, let us address the question of the choice of the most
realistic way of updating the states of elements in biological regulation net-
works. This question is very hard in the sense that we have almost no
biological information concerning any regulation clock. Indeed, biologists
argue that the updating of the elements of a regulation network is rather
unlikely to be perfectly synchronous or perfectly asynchronous. In addi-
tion, it is highly unlikely that all the genes belonging to a set of interacting
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genes that form a network follow the same time delays and constraints. In
Section 4.5, we discussed the case of the chrodyn genes and proposed a two-
scale updating solution to take into account this last problem concerning the
possibility of different time scales. As for the first problem of allowing both
synchronous and asynchronous updates, several solutions have also already
been proposed. The first solution are the well-known block-sequential update
schedules introduced by Robert [9] and mentioned at the beginning of this
article. Further, inspired by Robert’s update schedules, the authors of [16]
defined block-centred update schedules. This new definition adds the possibil-
ity to observe the network state each time a node or a set (a.k.a. a block) of
nodes changes states, by opposition to each time every node of the network
has been updated exactly once. Another solution (to both problems) called
general block-parallel update schedules was proposed in [59]. These update
schedules consist in defining blocks in which, contrary to block-sequential
update schedules, nodes are updated sequentially while the blocks them-
selves are updated in parallel. It was proven in [59] that, when the smallest
blocks “wait for” the other blocks so that no block is updated more often
than another, then block-parallel update schedules are equivalent to block-
sequential update schedules. However, if blocks are allowed to evolve inde-
pendently, we obtain a new kind of update schedule that allows the different
blocks to have their own period of update. Note that one of the main dif-
ferences between this update schedule and the updating method proposed
earlier to take into account chromatin dynamics (see Section 4.5) is that,
here, disjoint blocks of nodes evolve in parallel. Thus, the blocks have their
own time constraints but can impact on each other in a more continuous
manner. Note also that general block-parallel update schedules just like
block-sequential update schedules and block-centred update schedules, can
be integrated in the two-level updating mode proposed in Section 4.5 (at
the level of the nodes of each sub-network).

Now, we believe that further theoretical studies of the solutions pre-
sented above can lead to understand the impact of update schedules on the
dynamics of networks. We also believe that extending these solutions into
more and more realistic (but computable) updating methods could be of
great help to solve the following triplet of inverse problems, even partially
or at least for specific instances of networks:

1. What is the minimal information that one needs to know concerning
the interaction and transition graphs in order to be able to infer how
nodes of the network are updated?

2. What is the minimal information that one needs to know concerning
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the transition graph and the update schedule in order to re-construct
the interaction graph of the network?

3. What is the minimal information that one needs to know concerning
the update schedule and the interaction graph in order to re-construct
the dynamics of the network?

6. Conclusion

We have observed that the architectures of biological regulation net-
works involved in the control of the immune system (immunetworks) often
contain circuits that interact through their intersections. Considering like
Delbrück [3] that attractors of theoretical networks represent the different
cellular types controlled by the genetic regulation networks, we have focused
on the number of attractors of immunetworks which represent, together with
the diversity of the T cells receptors repertoire, an important aspect of the
ability of the immune system to deal with exogenous aggressions. More pre-
cisely, we have emphasised the importance of the role of intersections on the
dynamics of these networks and have argued that they are responsible for
the fact that the number of attractors is much smaller than what one may
expect to find by focusing solely and separately on the underlying circuits
in the network interactions architecture. Indeed, counting the number of
circuits, considering the number of attractors each one would yield if it were
isolated and multiplying all these numbers produces a much higher num-
ber of attractors than what is effectively observed. Therefore, intersections
of structural patterns (such as circuits) are crucial and may explain the
mono- or pauci -functional character of the different types of immunocom-
petent cells. Now, our discussion has been based on our knowledge of the
dynamics of circuits that intersect tangentially (i.e., that only have one node
in common). Pursuing further the idea that intersections cause substantial
decreases in the number of attractors, we may expect that any intersection
that is not tangential (a fortiori that expands over several genes), will have
an even more severe diminishing impact on the number of attractors. As
a consequence, we believe that our argumentation still holds for such kinds
of circuits intersections. However, in addition to the research perspectives
that have been described earlier in this article, we believe that a formal,
exhaustive study of their dynamics as was done for tangential circuits inter-
sections would still be useful to perform more precise calculations and draw
tighter bounds. For these theoretical studies, immunetworks will constitute
a dedicated application.

24



Acknowledgements

The work presented in this paper has been partly granted by the EC Net-
work of Excellence VPH, the ANR Project Synbiotic, the emergent project
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Appendix A. Graph theory

Appendix A.1. Graph related definitions

A digraph G is a couple (V,A), where V is a set of nodes (or vertices)
and A is a set of ordered pairs of nodes (or arcs) that represent interactions
between nodes. If the elements of A are unordered pairs of nodes then they
are rather called edges and G is called an undirected graph.

The set of arcs ending (resp. starting) in a node v ∈ V is denoted by
Γ−(v) (resp. Γ+(v)). The cardinal of this set is called the in-degree (resp.
out-degree) of node v and is denoted by deg−(v) (resp. deg+(v)). When all
nodes in a digraph have the same in- and out-degree equal to k, this digraph
is said to be k-regular. Moreover, a node v with in-degree (resp. out-degree)
0 is called a source (resp. sink). The connectedness of a digraph (resp.

of an undirected graph without loops (v, v) ∈ A) equals C = |A|
n2 (resp.

C = 2·|A|
n·(n−1)) where n = |V |. The connectivity c [1] is the average in-degree

which also equals n · C (resp. (n−1)·C
2 ).

In a digraph (resp. an undirected graph), a path (resp. a chain) is an
ordered sequence of arcs (resp. of edges) in which the end-node of an arc
(resp. an edge) is the start-node of the following one. A path is called a
circuit if the end-node of its last arc equals the start-node of its first arc.
The undirected version of a circuit is called a cycle. Moreover, a digraph is
strongly connected if it contains a path from u to v and a path from v to u

for every of its nodes u and v. The strongly connected components (denoted
in the sequel by SCCs for short) of a digraph are its maximal strongly
connected sub-digraphs. SCCs that contain only one node are called trivial
SCCs. Conversely, SCCs that contain more than one node are called non-
trivial SCCs. The digraph in which every SCC has been replaced by one
node is the reduced digraph of the original digraph. The core of a digraph
is defined as the sub-digraph containing all non-trivial SCCs as well as all
paths between them (i.e. the original digraph from which the up-trees (resp.
down-trees) made of the descendants of sources (resp. of ascendants of sinks)
which are not in non-trivial SCCs have been removed). The centre of a
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digraph is defined as the set of nodes u whose eccentricity (i.e., the maximal
length of the shortest paths from node u to all other nodes) is minimal. The
boundary of a digraph is the set of its sources.

A weighted digraph is a digraph in which a real number is assigned to
every arc. This number, called the weight of the arc, can be used to pre-
cise the type or intensity of the regulation (repression/inhibition or induc-
tion/activation) performed by the start-node of the arc on the end-node. A
signed digraph is a weighted digraph with weights valued in {−1, 0, 1}.

Appendix A.2. Random graphs structure

Let us focus on how one may build the underlying digraph representing
the architecture of a random network. Assuming we want the digraph to
have a given connectivity c, it is possible, with respect to this constraint,
to choose the arcs according to various probability distributions [60, 61].
For instance, one may choose uniformly at random an undirected d-regular
graph in the set of all undirected d-regular graphs. In [62], Meringer gave
an efficient algorithm to generate and count such graphs for small values of
d. Now, if d is taken to be equal to 3·c

2 , then an undirected d-regular graph

G with m = n·d
2 edges is obtained this way. Edges of G can then be turned

into arcs, by choosing uniformly between one orientation, the other or both.
This yields digraphs of connectivity c [26, 57].

To go further and close this discussion, let us evoke that we can obtain a
good insight of the nature of circuits contained in digraphs constructed this
way. Let Xs denote the random variable representing the number of cycles
of length s in a random d-regular undirected graph of size n. Supposing
the degree d = d(n) is allowed to increase with n, from [6, 63, 64], we
know that the variables Xs are asymptotically distributed as independent
Poisson variables with mean (d−1)s

2·s = (3·c−2)s

(s·2s+1)
(which equals 2s−1

s
when d = 3

and c = 2) and with maximal circuit size smax = smax(n) satisfying (d −
1)2·smax−1 = o(n). For instance, if d = 3 and c = 2, then smax = log2[o(n)]+1

2 .
Consequently, if n = 22 · 103 ≈ 214.5 (the size of the human genome), taking

o(n) = n
2

3 , we obtain that circuits have sizes less than smax = 5.

Appendix B. Biological regulation networks modeling

The theory of biological regulatory networks [1, 3, 4, 65] was born in
parallel to the theory of neural networks [66, 67]. It is now an extensive
research topic which aims at interpreting the ”omic” data from bio-array de-
vices. Biological regulatory networks are made of elements (genes, proteins,
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neurons. . . ) that interact. In order to represent the interaction structure of
these networks, the main tool that is used is called interaction graphs (see
Appendix A for generalities on graph theory). These digraphs are signed di-
graphs whose arcs represent positive or negative influences that are exerted
by some biological elements of the network (represented by the start-nodes
of the arcs) onto others (represented by the end-nodes of the arcs). Positive
arcs represent activations (or inductions) whereas negative arcs represent
inhibitions (or repressions). For instance, in many biological regulatory net-
works, some micro-RNAs (represented by grey nodes in Figure B.10, for
instance) act as inhibiting sources in the corresponding interaction graph,
that is, they act as inhibiting upper nodes belonging to the up-trees that
converge towards the“core”of the network (in the graph sense defined in Ap-
pendix A). Inhibitions can also be exerted by endogenous repressors lying
in the core of the network and thus belonging to regulating circuits. In the
network represented in Figure B.10, for instance, gene 0 acts on gene 1 which
acts on gene 2 . . . which acts on gene 5 which acts on the first gene 0. This
circular sequence of interacting genes is called a circuit in graph theory. The
core of this network contains two circuits that are both supposed to be neg-
ative (i.e., both have an odd number of inhibitions). The remaining nodes
of the network correspond to the up- and down-trees.
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Figure B.10: Conceptual regulatory network containing two negative intersecting circuits
(in red) sharing node 0: a circuit of length 6 and a circuit of length 2. The two intersecting
circuits are regulated by up-trees (in green) and tend to control down-trees (in blue).
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Appendix C. Kauffman Boolean networks and random Boolean

networks

AKauffman Boolean network [1] is a Boolean automata network in which
each gene (or automata1) i is the end-point of k arcs coming from k genes
i1, . . . , ik (possibly including gene i itself). These k genes are called the
regulators of i. In other words, the underlying interaction graph of the
network is k-regular. The state of gene i is updated according to a specific
rule xi(t+1) = fi(xi1(t), . . . , xik(t)), where xij (t) is the state of regulator ij
of i at time t. The local transition function fi of gene i is a Boolean function
that can be represented by a truth table that lists its outputs for each of the
possible sets of input values. Here, contrary to the formalism adopted in the
body of this paper (in Section 2), fi does not take as input the entire state
of the network. Instead, it takes only as input those values gene i effectively
depends on. Thus, a function fi with k variables can receive 2k different sets
of input values. Consequently, there are 22

k
different possible functions fi.

Since Kauffman introduced this eponymous model at the end of the
1960’s, numerous studies (see [68, 69, 70] for instance) have worked on gen-
eralisations of it. Random Boolean networks constitute one of these gen-
eralisations. The main difference between these networks and Kauffman
networks is that they are not k-regular in general but are constructed ran-
domly according to a given connectivity c, i.e., on average their in-degree
is c. Consequently, all update rules of nodes do not necessarily have the
same arity. Given a random interaction graph of size n and connectivity c,
we can define a random Boolean network of size n by choosing uniformly at
random the local update rule for every node i of in-degree ki amongst the
22

ki Boolean functions of arity ki.
When 1 ≤ c ≤ 2, the number of possible limit cycles has recently been

proven to be in general super-polynomial with respect to n [68, 69, 70, 71, 72].

Appendix D. Threshold networks

The interaction graph associated to a threshold Boolean network [66]
is a weighted digraph in which the weight wi,j on arc (j, i) represents the
intensity of the influence that gene j has on gene i, that is, the action gene
j has on gene i through the protein it expresses. More precisely, for any
couple of genes (j, i), the weight wi,j can be positive (in the case gene j

1From now on, we abuse language and use indifferently the words genes and automata.
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induces the expression of gene i), negative (in the case gene j represses the
expression of gene i) or null (in the case gene j has no influence on gene i and
the arc (j, i) does not belong to the interaction graph). Thus, a threshold
Boolean network is defined by an interaction matrix W of dimension n ×
n whose coefficients are the wi,j ’s. In addition, to every gene i is given
an activation threshold θi that represents the minimal interaction potential
needed to activate gene i. The Boolean vector whose coefficients are the
activation thresholds θi, for all i belonging to the interaction graph, is called
the threshold vector of the network and is denoted by Θ. Then, the update
rule for every gene i is defined as:

xi(t+ 1) = H(
∑

j∈{1,...,n}

wi,j · xj(t)− θi),

where
∑

j∈{1,...,n}wi,j · xj(t) is called the interaction potential of gene i at

time t and H is the Heaviside function satisfying H(x) =

{

0 if x ≤ 0,

1 otherwise.

In order to illustrate the relevance of studies on this kind of model,
we introduce some results concerning the dynamics of threshold networks
and their underlying circuits. In these particular networks, configurations
are elements of {−1, 1}n. Note that configurations y(t) ∈ {−1, 1}n can be
obtained from Boolean networks with configurations x(t) ∈ {0, 1}n, and vice
versa, by using the relation yi(t) = 2 · xi(t)− 1, where xi(t) ∈ {0, 1}n. The
hypotheses for which the following results hold are:

• the update schedule is parallel;

• the networks are strongly connected and thus contain at least one
circuit;

• all sources maintain their initial state;

• the interaction matrices Wn×n have a quasi-minimal structure. This
means that for all nodes i and j such that i 6= j, the arc (j, i) belongs
to the interaction graph G if and only if there exists x ∈ {−1, 1}n such
that H(

∑

k wi,k · xk − θi) 6= H(
∑

k 6=j wi,k · xk − θi). This implies in
particular that ∀i ∈ {1, . . . , n}, −

∑

k |wi,k| < θi ≤
∑

k |wi,k|.

Under these hypotheses, the authors of [45, 73, 74] proved the following
results:
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Theorem 1. If all cycles of the undirected version of G are positive then
there exists a vector x = (x1, . . . , xn) ∈ {−1, 1}n such that x and −x are
fixed points.

Theorem 2. If all circuits of G are negative then all attractors are limit
cycles.

Theorem 3. If m is the total number of positive circuits of G then the
number of fixed points is less than 2m. This upper bound is reached if and
only if, for all circuits C, there does not exist an arc (k, i) ending in C, with
k out of C (i.e., there is no source for C).

Theorem 4. If there are n arcs (as many as there are nodes) then the
network has a fixed point x if and only if G contains a positive circuit (in
this case, x and −x are both fixed points).

Appendix E. Relationships between the different formalisms

First, as it has been explained in Appendix D, in certain applications [27,
45, 67, 73, 74], the state 0 is replaced by −1 by a simple change of variable.

Obviously Kauffman and threshold networks can be expressed as par-
ticular instances of general Boolean networks. For the particular case of
circuits that we pay special attention to in this paper, the converse also
holds. Indeed, a Boolean network whose underlying interaction graph is a
circuit, is 1-regular. Thus, it is a Kauffman network. In addition, such a
Boolean network can also be expressed in terms of thresholds since the fol-
lowing expressions hold (respectively for a gene i activated by its predecessor
and for a gene j repressed by its predecessor):

xi(t+ 1) = fi(xi−1(t)) = xi−1(t) = H(xi−1(t)− 0) and

xj(t+ 1) = fj(xj−1(t)) = ¬xj−1(t) = H(−xi−1(t) + 1).

It can also be checked that Boolean networks with locally monotonous tran-
sition functions (i.e., such that the corresponding arcs may be signed either
by a + sign or a − sign unlike function f2 in Figure 2.A) of arity 2 can also
be put in terms of threshold functions. As a consequence, just as simple cir-
cuits, intersecting circuits can be considered also as instances of threshold
automata networks.
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Appendix F. Biological importance of attractors

A huge mathematical effort has been done to identify the sources of
the attractor multiplicity, known to be closely related to the number of
positive circuits underlying regulatory networks [4, 15, 22, 23, 57, 75, 76,
77, 78] as well as to understand the causes of attractor uniqueness. Both
these problems are of high interest if we want to explain the number of
differentiated functions (around 300 for the human being [57]) as well as the
presence of some unique functions that are devoted to one tissue.

In [7, 8], the dynamical behaviour of isolated and tangentially inter-
secting circuits has been studied. General combinatorial properties of the
asymptotic dynamical behaviours of these specific networks have been proven
theoretically. Concerning isolated circuits (positive as well as negative), ex-
plicit formulae of the number of attractors of period p and of the total
number of attractors of a circuit of size n have been given. About intersect-
ing circuits for instance, if the signs of the circuits are equal, the period of
an attractor divides the sum of the lengths of the two circuits. Moreover,
two positive intersecting circuits admit two fixed points whereas a positive
circuit intersecting a negative one (resp. two negative intersecting circuits)
admits only one fixed point (resp. does not admit any fixed point). Other
combinatorial results, such as the number of attractors of a specific period
for two intersecting negative circuits, have been obtained theoretically. From
these works which led to a precise knowledge of how isolated and intersecting
circuits work dynamically, were derived Tables 1 and 2. The importance of
these results lies in that they imply that intersecting circuits act as reduc-
ers of the number of attractors. To go further, in specific frameworks, they
allow to explain the bijective relation between function and tissue.

A relevant example showing the biological relevance of studying attrac-
tors is that of the network which regulates the Arabidopsis thaliana flower
morphogenesis [27, 79, 80]. This network can be modeled by a threshold
Boolean automata network. It is then represented by an interaction matrix
W of dimension 12×12 with only 25 non zero coefficients (see Figure F.11).
Structurally composed of seven positive circuits (one of size 1 and six of size
2 that intersect pairwise) and two negative circuits (one of size 3 and one
of size 4 that share two arcs, i.e., three nodes), this network has six fixed
points amongst which four represent floral tissues (sepals, petals, stamens
and carpels), one corresponds to a tissue which is in the plant but not in the
flower (inflorescence) and one has never been observed neither in nature nor
by experimentation (mutant). In [14], the authors have emphasised math-
ematical relationships between some structural features of the network, its
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Figure F.11: Gene regulation network of the floral morphogenesis of the plant Arabidopsis
thaliana and its attractors with the parallel iteration mode [79].

attractors and the physiological functions of the plant that ensure its flow-
ering. Other studies [81, 82] about the floral morphogenesis of Arabidopsis
thaliana, closer to the domain of statistical physics, have emphasised links
between networks dynamics and cellular differentiation.
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