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Creep motion of a granular pile induced by thermal cycling

Thibaut Divoux, Hervé Gayvallet and Jean-Christophe Géminard.
Université de Lyon, Laboratoire de Physique, Ecole Normale Supérieure de Lyon,

CNRS, 46 Allée d’Italie, 69364 Lyon cedex 07, France.

We report a time-resolved study of the dynamics associated with the slow compaction of a granular
column submitted to thermal cycles. The column height displays a complex behavior: for a large
amplitude of the temperature cycles, the granular column settles continuously, experiencing a small
settling at each cycle; By contrast, for small-enough amplitude, the column exhibits a discontinuous
and intermittent activity: successive collapses are separated by quiescent periods whose duration is
exponentially distributed. We then discuss potential mechanisms which would account for both the
compaction and the transition at finite amplitude.

Literature canonically presents granular materials as
a bunch of athermal particles [1–3]. Indeed, the energy
necessary for the grains to hop one over another (a few
tenths of millimeter, for instance) is roughly 10 orders
of magnitude higher than the ambient thermal agitation
kBT . This is probably one of the reasons why the behav-
ior of a granular assembly submitted to temperature fluc-
tuations has received so few attentions. Nonetheless, un-
controlled thermal dilations of a granular pile have been
reported to generate stress fluctuations large enough to
hinder reproducible measurements of the stress field in-
side the pile [4, 5], and even suspected to be the driving
factor leading to large-scale ”static avalanches” [6]. In-
deed, the slow relaxation and compaction of a granular
material, which has been hitherto produced by the input
of mechanical energy [7], can be induced by periodically
raising and then lowering the temperature of the gran-
ular assembly, as recently brought to the fore by Chen
and co-workers [8]. However, the compaction dynamics
as well as the basic mechanisms at stake remain unknown.
In this letter, we address the following questions: What
is the dynamic of the top of a granular column submit-
ted to thermal cycling? Does this compaction process
exhibit features analogous to aging, as other compaction
processes (tapping, cyclic shear...) do? And finally, what
is the behaviour of the grain assembly in the limit of low
amplitude temperature-cycles, i.e. well below a cycling
amplitude of 40◦C [8]?

Compaction of granular materials has been thoroughly
studied over the past 20 years both experimentally and
theoretically [7]. It has been achieved by direct input of
mechanical energy. By far, the most-used device consists
of a vertical column which is periodically shaken with a
controlled vibration intensity. Under vibration, a low-
density granular-pile compacts towards a steady state
with a final density that depends on the intensity of the
vibrations [1, 2]. Nonetheless, those final states have been
shown not to depend on the initial conditions (packing
fraction) and even to be genuine thermodynamic states
[9]. In addition to their general interest [7], vibrated
granular materials have been found to exhibit deep com-
mon physical features with out-of-equilibrium systems,

such as glasses. First, the spectrum of density fluctua-
tions was found to be strongly non-Lorentzian [10], which
is a signature of multiple timescales in the system. Also,
the response of the column to an abrupt change in shak-
ing intensity is analogous to aging in glasses [11, 12]. Fi-
nally, in the limit of small-intensity vibrations, the relax-
ation rate becomes so slow that the system cannot reach
the steady-state density within the experiment timescale.
At the microscopic scale, a grain exhibits random motion
within confined volumes or cages, occasionally a longer
exploration corresponding to a change of cage, and rarely
jumps, during which it moves ”significantly” [13]. Cyclic
shear deformations of a granular assembly also lead to
compaction and present the transient cage effects remind-
ing one of colloidal glasses [3, 14]. Those experimental
results have motivated numerous theoretical and numer-
ical works, a review of which can be found in [7].
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FIG. 1: Sketch of the experimental setup. Inset: pic-
ture of the upper part of the column. The granular level is
indicated by the white dotted-line.

Up to now, the heating of a granular pile has only been
used to develop dynamic light-scattering experiments [15]
or to probe numerically its impact on the force network
[16]. Here, we report the time-resolved compaction dy-
namics of a granular column submitted to a large number
of temperature cycles and shed new lights on the key in-
gredients governing this process.
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Experimental set-up - The experimental set-up (Fig. 1)
consists in a vertical glass tube (height 1.7 m, inner diam-
eter 13 mm) firmly fastened to a wall into the basement
of the physics department, in order to flee mechanical vi-
brations. The sample consists of a column (height H) of
spherical glass beads (diameter d) poured into the tube.
An additional gas-input, at the bottom of the column,
makes it possible to loosen the pile thanks to an upward
flow of dry nitrogen. The temperature cycles are im-
posed by means of a heating cable (Prolabo, 40 W/m)
directly taped on the outer surface of the tube wall. The
resulting temperature is measured by means of a sen-
sor (Pt100, located close to the free surface of the gran-
ular material) and a multimeter (Keithley Intruments,
Model 196). The free surface of the material, which is
illuminated by a red LED (Kingbright, L-793SRC-E, lo-
cated inside the tube, above the granular material) is
imaged from the side with a video camera (Panasonic,
WV-BP500) connected to a frame grabber board (Data
Translation, DT2255). A macro, running under a data-
processing software (WaveMetrics, IGOR Pro 4.0), makes
it possible to drive the heating power, to record the re-
sulting variations of the temperature and to measure ac-
curately the height H from the images: A subpixel reso-
lution (namely, less than a tenth of a pixel which typically
stands for 5 µm) is achieved by considering the average
position of the free surface, assumed to correspond to the
inflection point in the vertical intensity-profile averaged
over the whole diameter of the tube. Measurements are
performed 20 times per temperature cycle.

Due to long experimental times, we limit our report to
a given diameter d = 510±90 µm of the grains (Matrasur
Corp.) and to a given period 2π/ω = 600 s of the cy-
cles. The cycling period, 10 minutes, is arbitrarily chosen
to be small enough to avoid excessively-long experimen-
tal times but large enough to insure that the associated
thermal penetration-length lp ≡

√

2λ/(ρ Cω) ≃ 6 mm
is about the tube radius (λ ≃ 0.2 W m−1 K−1 and
C ≃ 106 J m−3 K−1 respectively denote the thermal
conductivity and heat capacity of a typical glass-grains
pile [17].) It is here crucial to note that the column is
heated homogeneously along its whole length but that
the temperature is likely to vary in the radial direction.

Prior to each experiment, the granular column is pre-
pared in a low-density state thanks to the dry-nitrogen
upward flow. The top of the column is then higher than
the field imaged by the camera (typically 1 cm above)
and we set the amplitude of the cycles, ∆T , to the largest
accessible value, ∆T = 27.1◦ C. The preparation of the
sample ends when the top of the column enters the ob-
servation field. At this point, the granular column is
”quenched”: The amplitude of the cycles is set to the
chosen value ∆T lying bewteen 0 and 27.1◦C, which de-
fines the origin of time t = 0. The granular column is
subsequently submitted to at least 1000 cycles (7 days).

First experimental observations - Under the action of
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FIG. 2: Height variation hn vs. number of cycles n.

One observes first an exponential behavior at short time fol-
lowed by a subsequent logarithmic creep at long time (The
black curve corresponds to the test function ht

n defined in the
text.) Inset: Oscillations of the column height associated with
the temperature cycles (An and δn are respectively defined to
be the amplitude of the increase and the drift of hn at the
cycle n.) For the chosen ∆T , the column settles slightly at
each cycle (H = 140 cm, 2π/ω = 600 s and ∆T = 10.8◦C.)

the temperature cycles the column height decreases: we
report the variation hn ≡ H(2πn/ω)−H(0), where n de-
notes the time in units of the cycle period or, equivalently
when integer, the number of imposed cycles (Fig. 2). We
observe that the thermal-induced compaction is a very
slow phenomenon: after 7 days (1000 cycles), the de-
crease of the height is of about 1.5 cm (about 1% of the
height H), which indicates that the system remains very
far from the maximum compaction (roughly a decrease
of about 10% of the column height, i.e. hn ∼ 10 cm)
within the experimental time. Accordingly, after the ex-
periment, we checked that a single finger tap produces
a collapse of the granular height of one centimeter at a
rough estimate. We also checked during 3 days that the
height H of the column stays constant when no temper-
ature cycles are imposed, which proves that ambient me-
chanical vibrations and changes in the room temperature
have no (or little) effect in our experimental conditions.

Before we discuss the compaction dynamics, it is rel-
evant to determine which part of the column is involved
in the phenomenon. Our measurements are accurate
enough for observing oscillations of H associated with
the temperature variations (Fig. 2, inset). We observe
on the raw data that the amplitude An, which is propor-
tional to ∆T , increases logarithmically with n (Fig. 3).
The oscillations of H are due to the thermal dilation of
both the tube and the granular material. In order to
assess the contribution of the granular material, we first
determine the amplitude, δht(z), of the tube displace-
ment in the laboratory frame as a function of the height
z (origin at the bottom of the column) by marking its
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FIG. 3: Amplitude An vs. number of cycles n. The data
are successfully accounted for by An = ∆T [a0+b0 ln(n)] with
a0 ≃ 13.8 nm/K and b0 ≃ 2.5 nm/K (H = 140 cm, 2π/ω =
600 s and, from bottom to top, ∆T = 10.8, 16.2 and 27.1◦C.)

outer wall. The amplitude δht(z) is found to be linear in
z and the slope provides us with an estimate of the linear
thermal-expansion coefficient, κ = (3.6±0.4)×10−6 K−1,
of the tube material. Then, considering the relative vari-
ation of the inner volume, we write the relation between
the amplitude An and the relative variation, δVg/Vg, of
the volume Vg of the granular material: An − δht(0) =
H(δVg/Vg−2κ∆T ). Experiments performed for different
height H demonstrate that An − δht(0) is proportional
to H , which shows that δVg/Vg is independent of H . We
thus infer that the whole height H of the granular column

is involved in the observed oscillations of the free surface.

Compaction dynamics - For a large ∆T (typically more
than 3◦C), the column systematically compacts during
the decrease of the temperature, at each cycle, and the
amplitude δn of the collapses (defined in Fig. 2, inset)
decreases when n increases, which accounts for the over-
all behavior of H as a function of n. We show here
that the results obtained by Chen and co-workers for
∆T > 40◦C [8] hold true at much smaller ∆T . Besides,
we resolve the column dynamics and, this, over a sig-
nificant longer duration. Here, the column height first
decreases exponentially to reach, after the characteris-
tic number nc of cycles, a logarithmic behavior at long
time (Fig. 2). This response to the thermal quenching
is very similar to the one the system exhibits to step
strain solicitation [18]. We estimated nc from the exper-
imental data by interpolating hn with the test function
ht

n ≡ h0 + he exp (−n/nc) + hl ln(n). In addition, we
checked that the shortest characteristic time obtained
from the interpolation by a double exponential [19] is
consistent with nc and presents the same behavior as a
function of ∆T . We observe that nc drastically increases
when ∆T is decreased. Moreover, nc even seems to di-
verge at ∆Tc (We get 2.8 < ∆Tc < 4.0 ◦C, Fig. 4), which
prefigures a qualitatively-different dynamics of the col-
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FIG. 4: Characteristic number nc vs. amplitude

∆T . The characteristic number of cycles nc increases dras-
tically when ∆T is decreased and even seems to diverge for
∆Tc ≃ 3◦C. Inset: For ∆T < ∆Tc, the column settles,
by jumps, linearly with time. For readibility, we only display
data obtained during the first half of the experiment duration
(14 days, H = 140 cm, 2π/ω = 600 s and ∆T = 2.8◦C.)

umn compaction at a lower amplitude.

For ∆T < ∆Tc, one indeed observes that the column is
not flowing regularly anymore, but evolves by successive
collapses separated by rest periods (Fig. 4, inset). The
overall compaction velocity is constant (steady regime)
and it is therefore relevant to consider the probability
distribution P (∆n) of the number of cycles ∆n between
two successive collapses (Fig. 5). However, due to the
small number of collapses, N = 175, within the experi-
mental time (14 days), the behavior of P (∆n) is difficult
to assess directly and we consider the cumulated prob-
ability, F (∆n) ≡

∫

∞

∆n
P (x) dx, instead [20]. We obtain

F (∆n) ≃ exp (−∆n/∆n∗) with ∆n∗
≃ 12 for ∆T =

2.8◦C (Fig. 5a). The delay ∆n between two successive
collapses is thus observed to be exponentially distributed.
By contrast, the amplitude of the corresponding col-
lapses, δn, exhibits a Gaussian probability-distribution
Q(δ) whose width is estimated to be δ∗ = 63 ± 4 µm
(Fig. 5b), roughly a tenth of the grain diameter. The
compaction of the material is thus shown to result from
collapses that are randomly distributed in time.

Discussion and conclusion - The mechanisms leading
to the compaction could be either extrinsic (the dilation
of the container at stake) or intrinsic (only due to the
dilation of the grains.) Chen et al. suggested that the
compaction could be due to ”the difference between the
thermal expansion of the container and of the grains” [8],
thus to an extrinsic mechanism. In our case, the beads
(κb = 9 × 10−6 K−1) and the container (κ = 3.6 × 10−6

K−1) are made of glass and present roughly the same
thermal expansion coefficient [21]. Thus, we do not think
that the thermal dilation of the container is the primary
cause of the compaction. This conclusion is supported
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FIG. 5: Statistics below the transition. (a) : The cumu-
lated probability F (∆n) ≃ exp (−∆n/∆n∗) is an exponen-
tial function of ∆n and the characteristic number ∆n∗ ≃ 12.
(b) : The probability distribution Q(δ) ≃ exp [−(δ/δ∗)2] is
a Gaussian function whose width δ∗ = 63 ± 4µm. The sta-
tistical data reported herein correspond to the 175 collapses
observed within the experimental time (14 days, H = 140 cm,
2π/ω = 600 s and ∆T = 2.8◦C).

by preliminary results obtained by heating periodically
the granular column along its axis [22] and the recent
simulations by Vargas and McCarthy [16]. Dealing with
an intrinsic mechanism, we guess that an overall tem-
perature change would only produce a homogeneous di-
lation of the pile and no spatial reorganisation of the
grains. We thus propose the following scenario, compat-
ible with previous results [8]: due to the radial thermal-
gradient of amplitude ∆T/lp, the grains are subjected to
a periodic shear, γ, along the vertical which induces lo-
cal rearrangments and, accidentally, internal avalanches.
This mechanism is supported by the estimate of the shear
γ = κb(∆T/lp)L, where L is a characteristic size which
ranges from the grain- to the tube-diameter. We obtain,
for L ∈ [0.510, 13] mm, that the relative displacement
of two neighbor grains Γ ≡ γd/∆T ∈ [0.4, 10] nm/◦C
whereas, using an AFM, we estimated the maximum size
of the asperities associated with the surface roughness
of the beads, s ≃ 100 nm (Invoking the surface rough-
ness is supported by numerical simulations: for perfectly
smooth grains the maximum compacity is reached after
a few cycles [16], which contrasts with our observations.)
In this framework, the continuous compaction would thus
correspond to amplitudes ∆T such as Γ∆T > s, whereas
jumps would be observed for ∆T < ∆Tc ≃ s/Γ. From
the experimental ∆Tc ≃ 3◦C, we could infer that the
typical length at stake, L, is about the tube radius and,
thus, the transition a finite-size effect. Due to long ex-
perimental times, we limited our report to results which
clearly demonstrate the efficiency of the techniques. The
dependance of the critical amplitude ∆Tc on the column

height and diameter as well as on the cycling frequency
and grain roughness is necessary to corroborate or dis-
card the proposed mechanism. In particular, the sensi-
tivity to the frequency ω will indicate the role played by
the temperature gradient. We also plan to locate the ori-
gin of the collapses by listening to the associated noise
and to observe the local displacement by optical means.
This way, we hope to correlate the macroscopic behavior
to the local dynamics as already done for tapping [13, 23]
and cycling shear experiments [3, 24].
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